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ABSTRACT
�is paper presents the design and implementation of a Common
TCP Evaluation Suite for ns-3. �e proposed evaluation suite uses
Tmix to generate realistic synthetic TCP tra�c, and is designed in
line with the recommendations from Internet Congestion Control
Research Group (ICCRG). We discuss the Tmix integration in ns-3,
shu�ing connection vectors of the real traces, architecture and
validation of the proposed evaluation suite. �e correctness of the
evaluation suite is veri�ed by comparing the results obtained from
it to those from an existing implementation of such a suite in ns-2.
Several open issues discovered with Tmix are also discussed in the
paper.
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1 INTRODUCTION
Over the past few years, extensive work has been done to enhance
the TCP performance, and as a result, many di�erent extensions of
it have been developed to cater to the changing needs of the Internet
applications. Evaluating these extensions and comparing them with
others is troublesome, one of the reasons being the absence of a
standard set of performance metrics to evaluate them. Also, some
TCP extensions cater to the needs of certain scenarios only, like
TCP Westwood [2], which is aimed to improve TCP performance in
wireless networks. Hence, it is crucial that researchers are able to
emphasise on the exact scenarios in which their TCP works be�er
than the others. To standardise the scenarios and enable researchers
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to gain quick insights into the working of TCP extensions, ICCRG
has proposed a common test suite [6]. �e aim of this suite is
not to exhaustively evaluate a new TCP extension, but to help the
researchers to easily and quickly derive initial results of their work.

In this paper, we propose an implementation of the test suite
proposed by ICCRG for ns-3. �e paper describes the architecture
of the proposed suite with a major focus on the integration of Tmix
tra�c generator [11] with latest ns-3 release, shu�ing the real
Internet traces as recommended in the ICCRG dra�, automating
the simulation setup, execution and results collection. We have
selected four experiments from ICCRG dra� and implemented them
in our proposed suite, namely access link, dial up, transoceanic and
the experiment related to delay throughput tradeo�. �e original
implementation of Tmix for ns-3 [4] takes care of the topology
setup inherently. However, only one type of topology design is
currently possible with Tmix, namely point-to-point dumbbell. Set-
ting up other topologies such as wireless dumbbell or parking lot
is not supported in Tmix, and extending it is beyond the scope of
this paper. �is is the primary reason behind selecting only four
experiments for implementation in the proposed test suite.

�e paper is organised as follows: Section 2 reviews the prior
work done towards the implementation of a TCP evaluation suite
in ns-2 and ns-3. Section 3 describes the architecture of the test
suite we built for ns-3, along with its integration with Tmix. Sec-
tion 4 presents the results of the various experiments run using
the proposed test suite, followed by Section 5 which contains a
preliminary validation of our test suite by comparing its results to
those obtained from ns-2 evaluation suite. �e open issues identi-
�ed during the process of building the evaluation suite for ns-3 are
discussed in Section 6. Lastly, Section 7 concludes the paper and
provides directions for extending the proposed evaluation suite.

2 RELATED WORK
�ere has been a lot of work done towards designing a suite for
evaluating the TCP extensions, but mainly for ns-2, like the propos-
als by Shimonishi et al. [10] and Li et al. [8]. However, the Internet
dra� by ICCRG [6] contains a set of experiments suitable for a wide
range of TCP variants, unlike [10] and [8] which focus only on
tests to evaluate high speed TCP extensions. �e suite developed in
this paper aims to follow the ns-2 TCP evaluation suite proposed in
[5], which has been developed by the same authors who prepared
the ICCRG dra�. Our aim is to create an evaluation suite in ns-3
which equals the one developed for ns-2, thereby providing the
researchers with all the useful features of the dra� in addition to
the bene�ts of using recently developed models in ns-3, such as the
tra�c control layer.
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Dharmendra et al. [9] implemented a TCP evaluation suite in ns-
3 which mainly provides features described in [1] and some of those
listed in [6]. However, this suite uses ns-3 tra�c for evaluation, un-
like the realistic tra�c generated by Tmix which is recommended
in ICCRG dra�. An alternative method to evaluate TCP extensions
is to run the simulations manually by using the default TCP imple-
mentations and tra�c generators provided in ns-3. However, this
process is tedious and the proposed evaluation suite simpli�es it. It
currently works only with the realistic tra�c generated by Tmix
and does not support ns-3 tra�c due to some limitations, more
details of which are explained in Section 5.

3 DESIGN AND IMPLEMENTATION
�is section describes the integration of Tmix with ns-3, the addi-
tional features which have been implemented in Tmix to meet the
requirements of the proposed suite, and �nally, the architecture of
the proposed suite in ns-3.

3.1 Tmix
To accurately analyse the nature of congestion control protocols
in actual networks, the Internet dra� mentions that it is essential
to have a fairly realistic tra�c generated for simulation. Tmix is
one such tra�c generator. It uses connection vectors to represent
each TCP connection. Every connection vector is composed of a
sequence of triples (request-size, response-size, think-time) repre-
senting bidirectional tra�c. �ese connection vectors are retrieved
from Internet tra�c traces such as the ones provided in [6]. To
generate steady �ows, the process is as follows: trace �les must be
shu�ed �rst, then the simulation topology must be created, and
lastly, each connection vector from the trace �le must be parsed
to generate the tra�c. �e following sections describe how these
functionalities have been implemented in our suite.

3.1.1 Shu�ling of Traces: Ideally, it is preferred that the experi-
ments are run until some sort of equilibrium results can be obtained.
In order to achieve this, the trace �les must be shu�ed to remove
non-stationary load. �is also ensures that the estimate of tra�c
remains constant throughout the execution of the experiment.

In the proposed suite, a class named TmixShuffle has been
implemented for shu�ing the Internet trace �les provided in [6].
Initially, the Tmix traces are divided into bins of di�erent sizes
based on the scenario and the load, and then each individual bin
is shu�ed by using Fisher Yates Shu�ing algorithm [13]. Every
scenario speci�es parameters like the target load, test time, warm
up time, pre�ll time, and scale which are required to generate the
shu�ed trace �les. Following are the main methods implemented
in TmixShuffle:

• Shu�leTraces: Creates the bins and shu�es the connec-
tion vectors based on the parameters listed in each scenario.

• FisherYatesShu�le: �is method implements the Fisher
Yates algorithm for shu�ing the connection vectors within
a bin.

• AddBurstStats: Calculates the burst duration of the data.
• ProcessBurst: Calculates the burst statistics of the con-

nection vectors.

3.1.2 Creating the Topologies: Every scenario speci�es the pa-
rameters to con�gure a dumbbell topology for the simulation. �ese
parameters are set using the TmixTopologyParameters class in our
suite. �e topology parameters that are set include:

• Edge link delay
• Bo�leneck delay
• Edge bandwidth
• Bo�leneck bandwidth
• End device queue limit
• Router queue limit

Once the con�guration parameters are obtained, a dumbbell
topology is created by a class named TmixTopology which is im-
plemented in the Tmix module. Although this class belongs to the
Tmix module, we have largely modi�ed its implementation and
shi�ed it to our suite. �e methods that set up the topology are:

• NodeTypeByAddress: this method �nds a node from its
IP address.

• AssignNodes: this method creates the le� and the right
side nodes of the dumbbell topology.

• NewPair: it uses the nodes created in AssignNodes and
creates a new sender/receiver pair, with initiator and ac-
ceptor applications installed on them.

• ConnectNodeToRouter: this method is invoked from
NewPair. It creates a channel between each NetDevice and
the router, se�ing its properties to the ones obtained from
TmixTopologyParameters class. Furthermore, queues for
these channels are installed on the respective edge nodes
and the routers in this method.

• ConnectRouter: this method installs the queues on the
routers which are constantly monitored for the purpose of
evaluation. �e trace sources installed on these queues are
used to extract the evaluation metrics of interest.

A�er the topology is created, Tmix initiator and acceptor ap-
plications are installed on every sender/receiver pair using the
TmixHelper class, and the connection vectors are added to these
applications to send the data.

3.1.3 Tra�ic Generation: Tra�c generation requires converting
the felix connection vectors [7] obtained from the shu�ed trace
�les to a ns-3 parsable connection vector format. �e converted
vectors are then parsed and tra�c is generated in ns-3 from it. �is
functionality is provided by the Tmix module in the Tmix class.

3.2 Architecture of the Module
Like every other module in ns-3, our suite is placed in a new di-
rectory called common-tcp-eval-suite inside src which contains
models, helpers, and examples. �e simulation output is stored
in tcp-eval-output which is a directory at the same level as src.
Figure 1 describes the structure of the common-tcp-eval-suite
module for ns-3.

3.2.1 Model: �is directory contains the code which is common
to all scenarios like shu�ing of traces, topology creation, calculating
performance metrics, and collecting results.

3.2.2 Helper: �is consists of the helper classes that assist in
the creation of the topology and generation of the Tmix tra�c.
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Figure 1: Architecture of the Common TCP Evaluation Suite for ns-3

�e tmix-scenario-helper {.h, .cc} contain functions that set
up the topology parameters and the tra�c parameters which are
passed to the TmixTopology class. �ey also facilitate running the
scenario once the parameters are set. �e services provided by each
method are listed below:

(1) SetExptParameters: this method sets the parameters for
the topology such as bandwidth, link delay, and number
of node pairs.

(2) SetTmixParameters: the parameters required for shuf-
�ing the trace �les are set here, such as pre�ll time, maxi-
mum segment size, load tolerance, scale and warm up time
etc. It also calculates the total simulation time from these
values.

(3) AddCvecsToPairs: this converts the shu�ed traces to a
ns-3 parsable connection vector format, so that they can
be parsed by the nodes. �e �ows are then de�ned and the
connection vectors extracted from the �les are installed
into the nodes.

(4) RunScenario: this method is invoked to run the scenario
a�er se�ing the required parameters. It �rst calls the
method ShuffleTraces() which takes the Tmix param-
eters as arguments and creates the shu�ed traces. �is
scenario is then run for the TCP extensions speci�ed by
the user. Subsequently, the addCvecsToPairs() method

is called to install the traces on the nodes. Lastly, the simu-
lator is run for the speci�ed simulation time computed in
the SetExptParameters() method.

(5) DestroyTrace: it invokes destroyConnection() which
cleans the trace �les installed on the bo�leneck routers to
collect the metrics.

Based on the descriptions of di�erent classes provided above,
Figure 2 presents the class diagram of the proposed suite.

3.2.3 Examples. All the experiments implemented in this suite
are placed here. �e parameters speci�c to each experiment are set
and passed to the functions of the helper class as they are invoked.
�e results for these examples are collected in the tcp-eval-output
folder in the same level as src directory. �e output is collected
in separate folders for every experiment. As an example, the inter-
action of the user with our module for simulating the AccessLink
experiment is shown in Figure 3.

3.3 Evaluation of Metrics
As recommended in the dra�, we have considered three perfor-
mance metrics for evaluation: average throughput, average queue-
ing delay, and the average packet drop rate. �ese metrics are
calculated on the bo�leneck link in both directions.

To extract these values, trace sources are installed on QueueDisc
and NetDevice of the routers. Each time a packet is enqueued,
dequeued or received by the device, the method which calculates the
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Figure 2: Class diagram of the Common TCP Evaluation Suite for ns-3

Figure 3: User interaction diagram of the Common TCP Evaluation Suite for ns-3
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performance metrics is invoked. �e assignment of the timestamp
to the packets as they enqueue and dequeue is implemented in the
eval-ts {.h, .cc} in the model subdirectory. eval-ts is a sub
class of packet tag, and is used to record the enqueue time of packet
on the QueueDisc. On dequeue, this timestamp is used to calculate
the queue delay.

Methods to calculate the performance metrics are implemented
in tmix-topology.cc in the model subdirectory of the our suite.
Following is the list:

(1) PacketEnqueue: this method is invoked when a packet
is enqueued. It adds a timestamp to the packet as a tag.

(2) PacketDequeue: this method is invoked when the packet
is dequeued. It removes the timestamp and subtracts it
from the current time, which is the dequeue time of the
packet. �is di�erence between the dequeue and enqueue
time gives the queue delay of the packet. �e queue delay
values are collected at an interval of 10 milliseconds and
the average queue delay for that interval is logged into the
output �le. �e total queue delay and number of records
are also maintained.

(3) PacketSize: this method is invoked when a packet arrives
at the router netdevice. �e packet sizes are recorded for a
minimum of 10 milliseconds and the average of this over
the time range is printed into the throughput �le. �e sum
of all the throughput values and a total number of records
printed are maintained. Also, average of the total packets
dropped in the same interval are printed in a separate �le.

Lastly, the average values of packet drop, throughput, and queue
delay are stored in separate �les and the method to calculate sum-
marise results is invoked at the end of the simulation.

4 RESULTS
In this section, we compare the performance of 8 TCP extensions
in AccessLink scenario by using the proposed suite. Table 1 shows
the simulation setup for the same. �e values selected for every
parameter are based on the recommendations in the dra� [6].

Table 1: Simulation Parameters

Topology Parameters Values
Bottleneck Bandwidth 100 Mbps
Bottleneck Delay 2 ms
Edge Bandwidth 100 Mbps
Le� side Edge Delays 0ms, 12ms and 25ms
Right side Edge Delays 2ms, 37ms, and 75ms
Bottleneck Bu�er Size 100 ms (850 packets)

�e dra� [6] suggests to run each scenario with three di�erent
loads; 60%, 85%, and 110%. However, due to space constraints, only
the results of 60% load are presented here. Moreover, the results are
discussed only for a few selected TCP extensions which includes
one each from standard TCPs, high speed TCPs, delay based TCPs,
and TCPs for wireless networks. �e results for other experiments
can be generated using our code which is openly available at [3].

�e forward tra�c consists of request messages sent from ini-
tiator to acceptor, and the reverse tra�c from acceptor contains
responses to those requests. �e acceptor is analogous to a server
sending bulk of tra�c. �e graphs shown in Figure 4 through Fig-
ure 7 present the instantaneous throughput and queue delay for
the tra�c sent from the acceptor. All simulations are run for 600
seconds.

A sharp decrease in queue length and throughput is seen in all
the graphs towards the end. It can be observed that the throughput
is close to the link capacity for most of the simulation duration, but
a�er this the throughput stoops as the tra�c load is too much for
the network to handle and as a consequence, the network collapses.
�is is an issue with Tmix traces as they breaks the equilibrium
state of the experiment.

In order to be able to compare all the TCP extensions together,
we have generated a plot with throughput on the Y-axis and �eue
Delay on the X-axis. As shown in Figure 8, the comparison between
them is depicted as an ellipse in such a way that the covariance
between the queuing delay and throughput will be determined
by the orientation of the ellipse. �is can help us to analyze the
e�ect of tra�c load on throughput and queuing delay. �e graph is
generated using the following two scripts:

• ellipsemaker: this script was obtained from the TCP Ex
Machina project [12] to generate covariance error ellipse
between queuing delay and throughput.

• generate-ellipsepoint: the value of throughput for ev-
ery recorded value of queue delay is found using this script.

Figure 4 and Figure 6 show the variation in throughput and queue
delay for TCP NewReno and TCP Vegas respectively. It is evident
that TCP Vegas reduces the queue delay sooner than TCP NewReno
and hence, leads to lesser variations in queue delay. TCP NewReno
infers congestion based on packet drops whereas TCP Vegas infers
it based on the increase in the RTT. Hence, TCP Vegas doesn’t wait
for the packet to drop, and reduces the congestion window (cwnd)
earlier to control congestion. However, this results in TCP Vegas
having lower throughput as compared to TCP NewReno.

Similarly, Figure 8 depicts that TCP Westwood performs worse in
comparison to all other TCP extensions. TCP Westwood is conser-
vative in nature mainly because it is tailored for wireless networks
which are characterised by high noise and packet drop rate. It
relies on bandwidth estimation to control congestion. Bandwidth
is estimated by mining the acknowledgement packets. Moreover,
Westwood treats packet drops di�erently and does not respond to
every packet drop by reducing the congestion window.

TCP HighSpeed (Figure 5) with its improved window calcula-
tions, results in faster window growth as compared to any other
TCP and also recovers from losses more quickly. �ese features are
very useful in networks with high bandwidth like the TransOceanic
scenario. However, in case of scenarios like AccessLink, its perfor-
mance will be similar to TCP NewReno as shown in the graph. �e
range of its queue delay values is lesser compared to TCP NewReno
due to the improvements in the congestion window calculation.
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(a)�eue Delay for TCP NewReno (b) �roughput for TCP NewReno

Figure 4: �roughput and�eue Delay with TCP NewReno

(a)�eue delay for TCP HighSpeed (b) �roughput for TCP HighSpeed

Figure 5: �roughput and�eue Delay with TCP HighSpeed

(a)�eue Delay for TCP Vegas (b) �roughput for TCP Vegas

Figure 6: �roughput and�eue Delay with TCP Vegas
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(a)�eue Delay for TCP Westwood (b) �roughput for TCP Westwood

Figure 7: �roughput and�eue Delay with TCP Westwood

Figure 8: Combined TCP Comparison Graph

5 PRELIMINARY VALIDATION OF THE TEST
SUITE

In order to verify the correctness of our suite, we chose to compare
the results obtained from our evaluation suite in ns-3 to those
obtained from ns-2 evaluation suite. Comparing our results to
those obtained by using ns-3 tra�c generators is not feasible, as
the tra�c composition obtained from Tmix depends on random
number generators and cannot be reproduced by using the ns-3
tra�c generators.

We chose the AccessLink experiment for this purpose as it is the
most commonly studied scenario for TCP experimentation. Other
experiments which are commonly implemented in ns-3 and ns-2
suites can also be used for validation. Our code has been made
openly available at [3] along with the Internet trace �les used for
generating results in this section. Table 2 shows the results obtained
from both evaluation suites.

Except the average queue delay for reverse tra�c (sender to
receiver), all the other results obtained from ns-3 evaluation suite
match with those obtained from ns-2 suite. While trying to �gure
out the reason for this di�erence, it was noted that the topology

creation in Tmix is �awed because it creates net devices depending
on the number of sender/receiver pairs. For example, if a same
sender is paired with three receivers, Tmix creates three separate
net devices at the sender node, each one con�gured to operate at a
particular data rate. �us, if the intended data rate between each
sender and router was 100Mbps, it becomes 300Mbps now because
each netdevice can send packets at a rate of 100Mbps individu-
ally. Due to this behavior, the routers in ns-3 suite were far more
congested than the ones in ns-2 suite, which a�ributed to larger
queueing delay in ns-3. As a temporary hack, we tried manipulating
the edge link bandwidth such that the aggregate bandwidth of all
net devices on each sender turned out to be 100Mbps and compared
our results again with those of ns-2. We found that the ns-3 results
matched with those of ns-2 for all metrics. However, we have not
included that hack in our code released at [3], as it is a critical issue
and should be resolved more systematically.

Table 2: Results obtained from ns-3 and ns-2 Evaluation
Suites

Evaluation metric ns-3 ns-2
Forward�eue Delay (in ms) 0 0.023
Forward �roughput (in MB/sec) 2.011 2.28
Forward Packet Drop Rate 0 0
Reverse�eue Delay (in ms) 22.4 0.7
Reverse �roughput (in MB/sec) 8.70 8.70
Reverse Packet Drop Rate 0 0

6 OPEN ISSUES
We highlight some open issues encountered during the design and
implementation of this suite in ns-3:

• �is evaluation suite requires signi�cant restructuring of
the Tmix module: we had to modify the tmix-topology
{.h, .cc} to enable the creation of a dumbbell topology
with di�erent edge delays. Also, modi�cations were made
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to constrain the number of nodes on each side of the dumb-
bell, as the original Tmix code created two nodes for each
initiator/acceptor pair whenever a link is created. However,
as mentioned in Section 5, new net devices are still being
created for each initiator-acceptor pair. �is creates multi-
ple channels from an edge node to a router node, which
drastically increases the incoming bandwidth. �e increase
in the number of net devices and channels connected to a
router is around twice the factorial of the total number of
nodes connected to that router. �is is still a limitation on
the topology that is created and must be recti�ed.

• Tmix should be extended to support various other topolo-
gies like wireless dumbbell and parking lot: currently, for
each connection, a point-to-point link is created between
two nodes. Hence, additional support for di�erent types
of links (e.g., CSMA, WiFi, etc) must be added to the ex-
isting code to enable the usage of this suite for di�erent
network experiments. �e current implementation of Tmix
topology is tailor made for basic dumbbell topology and re-
quires considerable amount of code to be added to support
a complex topology like parking-lot.

• Additional modules (e.g., Explicit Congestion Noti�cation)
are required in ns-3 to support the scenarios like Data
Center Networks.

• Simulating a single scenario using this suite requires long
amount of time on a personal desktop con�guration, rang-
ing from days to weeks. �e MPI support in ns-3 could be
leveraged to reduce this time and improve the e�ciency
of the suite.

• For a�aining the equilibrium in the experiment, the traces
are shu�ed such that the tra�c o�ered in the second third
of the simulation is equal to the �nal third. However, due
to network collapse, the throughput and the queue delay
reduce sharply and the tra�c becomes highly unstable as
evident from the graphs in Section 4.

7 CONCLUSION AND FUTUREWORK
In this paper, we have proposed a Common TCP evaluation suite
for ns-3 which allows the researchers to plug in their proposed
TCP extension and evaluate its performance in the presence of
realistic Internet tra�c. �e proposed test suite can be used to
compare the performance of the existing TCP variants, or to gain
an in-depth understanding of the working of a particular TCP. We

look forward to add more experiments to our test suite which were
di�cult to implement due to signi�cant changes required in the
implementation of Tmix and unavailability of a few modules in
ns-3, such as the support for satellite network simulations. Finally,
we aim to validate our proposed suite thoroughly by comparing
the results obtained from it to those obtained from ns-2 evaluation
suite.
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