Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

TCP Evaluation Suite for ns-3

Dharmendra Kumar Mishra, Pranav Vankar and Mohit P. Tahiliani
Wireless Information Networking Group (WiNG)
NITK Surathkal, Mangalore, India, 575025
dharmendra.nitk@gmail.com, pranavvankar442@gmail.com, tahiliani@nitk.ac.in

ABSTRACT

Congestion Control (CC) algorithms are essential to quickly
restore the network performance back to stable whenever
congestion occurs. A majority of the existing CC algo-
rithms are implemented at the transport layer, mostly cou-
pled with TCP. Over the past three decades, CC algorithms
have incrementally evolved, resulting in many extensions of
TCP. A thorough evaluation of a new TCP extension is a
huge task. Hence, the Internet Congestion Control Research
Group (ICCRG) has proposed a common TCP evaluation
suite that helps researchers to gain an initial insight into
the working of their proposed TCP extension.

This paper presents an implementation of the TCP eval-
uation suite in ns-3, that automates the simulation setup,
topology creation, traffic generation, execution, and results
collection. We also describe the internals of our implemen-
tation and demonstrate its usage for evaluating the perfor-
mance of five TCP extensions available in ns-3, by automati-
cally setting up the following simulation scenarios: (i) single
and multiple bottleneck topologies, (ii) varying bottleneck
bandwidth, (iii) varying bottleneck RTT and (iv) varying
the number of long flows.

CCS Concepts

eNetworks — Transport protocols; Network simula-
tions; eComputing methodologies — Simulation envi-
ronments;

Keywords
ns-3, Congestion Control, TCP Evaluation

1. INTRODUCTION

Congestion Control (CC) algorithms implemented in TCP
play a vital role in ensuring proper functioning of the Inter-
net. Over the period of time, as CC algorithms continue to
evolve, a lot of new TCP extensions are frequently proposed.
Evaluating the performance of new TCP extensions is not
trivial because there is a lack of agreed set of performance
metrics, because of which, each study highlights only a par-
ticular aspect of TCP while leaving some of the most impor-
tant ones. Due to a high volume of research being carried

(© 2016 Association for Computing Machinery. ACM acknowledges that this contri-
bution was authored or co-authored by an employee, contractor or affiliate of a national
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

WNS3, June 15-16, 2016, Seattle, WA, USA

© 2016 ACM. ISBN 978-1-4503-4216-2/16/06. .. $15.00

DOL: http://dx.doi.org/10.1145/2915371.2915388

out in this area, there is a need for systematically screening
every new TCP extension and identifying the suitable ones
for detailed evaluation.

To address this problem, the Internet Congestion Control
Research Group (ICCRG) [1] provides information regarding
a common test suite for evaluating new TCP extensions.
This suite is not framed to ezhaustively evaluate a new TCP
extension; instead, it focuses to help the researchers to easily
and quickly derive initial results of their work.

In this paper, we present an implementation of TCP eval-
uation suite in ns-3 [2]. We also highlight some additions
that were required in existing models of ns-3 to success-
fully implement the suite. Our implementation can be used
to automate the work cycle from setting up the simulation
environment to collecting results. Moreover, our implemen-
tation provides support for automatically configuring many
Internet-like scenarios such as scenarios with single and mul-
tiple bottleneck links, scenarios with different traffic mix and
scenarios with varying bottleneck attributes. Nevertheless,
our implementation is only a part of the evaluation suite de-
signed by ICCRG [1]. Implementing the entire suite requires
significant changes to existing models in ns-3 and is beyond
the scope of this paper.

The rest of this paper is organized as follows: Section 2
provides a review of similar benchmark proposals for TCP
evaluation and their implementation details. Section 3 dis-
cusses the design choices and our proposed architecture of
TCP evaluation suite in ns-3. Section 4 demonstrates the us-
age of our suite to compare existing TCP extensions in ns-3
by automatically configuring different simulation scenarios.
Lastly, Section 5 summarizes and concludes the paper.

2. RELATED WORK

The design of TCP evaluation suite dates back from a pa-
per in 2007 to an internet draft in 2014, as shown in Table
1. All proposals have been implemented using ns-2 [7]. Al-
though both, proposal 1 and 3, are targeted towards evaluat-
ing High-Speed TCPs, each adopts a different approach for
implementing it. Proposal 4 is an enhancement of proposal
2, both being the internet drafts. Moreover, they adopt a
similar approach for implementation in ns-2; in fact, pro-
posal 4 extends the implementation of proposal 2.

The design and implementation of TCP evaluation suite
presented in this paper is partially adopted from the ap-
proach followed by proposals 2 and 4. We found that the
implementation of TCP evaluation suite in ns-3 is relatively
simpler, thanks to the topology helper classes provided.

3. DESIGN AND IMPLEMENTATION

TCP evaluation suite is implemented as a separate model
called tcp-eval, under the src directory in ns-3. This sec-

25

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

Table 1: Different implementations of TCP Evalua-
tion Suite.

No. | Details of proposals Tools used

1 Shimonishi, Hideyuki, M. Y.
Sanadidi, and Tutomu Murase.
“Assessing Interactions among
Legacy and High-Speed TCPs.”
PFLDnet 2007 (2007).

ns-2. Download
link [3]

2 Internet draft: “An NS-2 TCP
Evaluation Tool”, Gang wang,
Yong Xia, David Harrison (April
2007)

ns-2. Code was
released in two
versions. Down-
load link of sec-
ond version [4]

ns-2. Download
link [5]

3 Li, Yee-Ting, Douglas Leith, and
Robert N. Shorten. “Experi-
mental evaluation of TCP pro-
tocols for high-speed networks.”
Networking, IEEE/ACM Trans-
actions on 15.5 (2007): 1109-1122.

ns-2. Download
link [6]

4 Internet draft: “Common TCP
Evaluation Suite”, D. Hayes, D.
Ros, L. Andrew, S. Floyd (July
2014)

tion describes the core design decisions made for the develop-
ment of the TCP evaluation suite model, along with several
additions that were required in the existing models of ns-3.
Table 2 highlights different elements that are supported in
our implementation of tcp-eval. Figure 1 depicts the in-
teractions among different classes implemented in tcp-eval,
and with other existing classes of ns-3.

Table 2: Different elements supported by tcp-eval.

Topologies Types of traffic | Performance
metrics

Dumbbell (single | Long-lived FTP | Aggregate link

bottleneck) (TCP) utilization

Parking lot (mul- | Streaming video | Mean queue

tiple bottleneck) | (UDP) length
Interactive voice | Packet drop rate
(UDP)

The tcp-eval model comprises three primary classes:

3.1 ConfigureTopology

This class is used for configuring the simulation param-
eters such as setting bottleneck bandwidth and bottleneck
delay, setting the parameters for Random Early Detection
(RED) algorithm [8], etc. It acts as a base class to configure
parameters for dumbbell and parking lot topologies.

3.2 CreateTraffic

This class generates different traffic patterns for the sim-
ulation, as listed in Table 2.

Long-lived FTP traffic: It runs on top of TCP and is
generated by using the BulkSend Application provided in
ns-3. It generates a stream of packets, each of size 512 bytes,
till the end of simulation. Moreover, this traffic can be gen-
erated in forward, reverse and cross directions. Cross FTP

traffic is generated only for parking lot topology.

Streaming video traffic: It runs on top of UDP and is
generated by using the On0ff Application provided in ns-3.
The default packet size is set to 840 bytes and the streaming
rate is set to a default value of 640 Kbps [4]. The packet
size and streaming rate can be explicitly configured by the
user through command line arguments. This traffic can be
generated in forward and reverse directions.

Interactive voice traffic: This traffic also runs on top
of UDP and is generated by using the On0ff Application
provided in ns-3. The default packet size is set to 172 bytes
and the data rate is set to a default value of 64 Kbps [4].
This is a two-way traffic between the caller and the callee.

3.3 EvalStats

This class is used for collecting post simulation results and
store them in files, which are later used to plot graphs. All
the performance metrics listed in Table 2 are calculated in
this class.

Aggregate Link Utilization: This metric specifies the
ratio of current network traffic to the maximum available
bandwidth. It is important for a new TCP extension to
maximize the bandwidth utilization, while ensuring fairness
with other TCP flows.

Mean Queue Length: Maintaining a steady queue length
is important to avoid variations in delay. Large variations
in delay affect the user perceived application behaviour, es-
pecially in the case of interactive voice applications and
streaming applications. This metric is important to anal-
yse the stability of a new TCP extension.

Average Packet Drop Rate: This metric is crucial to
analyse the performance of TCP in the presence of bursty
background traffic. High packet drop rate hurts the perfor-
mance of time sensitive traffic like Google search, etc.

3.4 Other Classes in tcp-eval

TrafficParameters: This class provides setters and getters
for configuring the traffic related parameters like:

e Number of forward FTP flows
e Number of reverse FTP flows

e Number of cross FTP flows

Number of two-way voice flows
e Number of forward streaming flows
e Number of reverse streaming flows

DumbbellTopology: This class sets up a dumbbell sim-
ulation scenario, and is placed in a file called dumbbell-
topology.cc in tcp-eval model. First, it creates a dumb-
bell topology by invoking PointToPointDumbbellHelper class
which is already available in ns-3. Next, it obtains the
simulation parameters from ConfigureTopology, generates
the traffic using CreateTraffic, and finally calculates and
stores the results using EvalStats. Figure 2 shows user’s
interaction with tcp-eval model for simulating dumbbell

26

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2

Seattle, Washington, USA - June 15-16, 2016

PointToPointDumbbellHelper

ConfigureTopology

m_leftLeaf

m_bottleneckBandwidth

PointToPointParkingLotHelper

m_rightLeaf m_nBottienecks
m_rttp
GetlLeft {) SetTopologyParameters ()

Assignipv4Addresses ()

SetRedParameters ()

m_routers
m_crossSources
m_crossSinks

GetCrossSourcelpvdAddress ()
Assignipvd4Addresses ()

T

DumbbeliTopology ParkingLotTopology
-------- m_crossLinkDelay
CreateDumbbellTopology () CreateParkingLotTopology ()
Vi W W

TrafficParameters CreateTraffic EvalStats

m_nFwdFtpFlows m_randVar m_totalUtilization
m_nVoiceFlows m_totalDroppedPacketRate
m_nFwdStreamingFlows m_totalQueueSize
SetNumOfVoiceFlows () CreateFwdFtpTraffic () ComputeMetrics ()

SetStreamingRate ()
SetStreamingPacketSize ()

CreateVoiceTraffic ()
CreateFwdStreaming Traffic ()

AggregateOverinterval ()
AggregateQueue ()

Figure 1: Class diagram of TCP Evaluation Suite in ns-3.

1
drive-dumbbell.cc traffic-parameters.cc
3
configure-topology.cc
4 2
|-ttt TT T T s mr T \
| |
dumbbell-topology.cCle— — — — — — —| | point-to-point-dumbbell.cc |
I I
| e e e e e e 1
7
5
create-traffic.cc
6
eval-stats.cc
Legends

D Core modules

8
D Configuration module

Figure 2: User interaction diagram of tcp-eval for dumbbell scenario.

i:] Supporting module

scenarios. drive-dumbbell.cc creates an object of Traf-
ficParameters, before creating an object of this class.

parking lot scenarios, even without the tcp-eval model.

The functionality of ParkingLotTopology class is equiva-
lent to that of DumbbellTopology, except that it is respon-
sible to set up a parking lot simulation scenario. This class
is placed in a file called parking-lot-topology.cc in tcp-
eval model. Figure 3 shows user’s interaction with tcp-eval
model for simulating parking lot scenarios. drive-parking-
lot.cc creates an object of TrafficParameters, before cre-
ating an object of this class.

ParkingLotTopology: While implementing this class we
found that a helper for creating multiple bottleneck topol-
ogy, like parking lot topology, is not available in ns-3. Hence,
we implemented a class called PointToPointParkingLotHelper
and included it in the point-to-point-layout model of ns-
3. This helper is a stand-alone implementation and not
closely linked to tcp-eval model. It can be used to simulate

27

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

1

drive-parking-lot.cc —| traffic-parameters.cc
3
configure-topology.cc
4 2
ottt Tt I
parking-lot-topology.cC ¢~ ——————— | point-to-point-parking-lot.ccl
| |
' e ___ I
7
5
create-traffic.cc
6
eval-stats.cc
Legends
D Core modules
8
D Configuration module

r Supporting module

Figure 3: User interaction diagram of tcp-eval for parking lot scenario.

4. NS-3 TCP EVALUATION USING TCP-EVAL

In this section, we compare the performance of five TCP
extensions available in ns-3 by using our implementation of
the suite. We provide a set of six shell scripts that run a se-
ries of simulations by varying the following three parameters:
bottleneck bandwidth, bottleneck RTT and the number of
forward FTP flows in two topologies: dumbbell and parking
lot. Once the results are collected in respective files for ev-
ery scenario, shell scripts convert those textual results into
graphical form. Further, a PDF file containing graphs for
each scenario is created automatically if LaTex is installed.

As suggested by ICCRG, we randomize the start times of
all traffic flows to model the real traffic behaviour. More-
over, our implementation provides support for simulating
RED algorithm [8] at bottleneck routers. We have used the
traditional droptail mechanism in our scenarios, however, to
keep the analysis simple. The bottleneck routers can be eas-
ily configured to use RED algorithm by passing command
line arguments. No further changes are required.

Table 3: Default simulation parameters.

Simulation Parameters Values
Bottleneck bandwidth 10 Mbps
Round Trip Time 80 ms
Number of forward FTP flows 5
Number of reverse FTP flows 5
Number of voice flows 5
Number of forward streaming flows 5
Number of reverse streaming flows 5
Simulation time 100 seconds
Streaming rate 640 Kbps
Streaming packet size 840 bytes

4.1 Varying Bottleneck Bandwidth

In this scenario, the bottleneck bandwidth is varied from
1 Mbps to 100 Mbps. Other parameters shown in Table 3
remain fixed. For every TCP extension, simulation runs till
the specified duration for a collection of bandwidth values.

Varying the bottleneck bandwidth provides an estimate
of TCP’s performance under the same traffic load, but dif-
ferent bottleneck capacity. Figure 4 and 5 depict the simu-
lation results obtained by varying bottleneck bandwidth in
dumbbell and parking lot topologies, respectively. It can
be observed that the bottleneck link occupancy in both the
figures is close to 100% for all TCP extensions when the
bandwidth values are relatively low, and it gradually de-
creases with the increase in the bandwidth. It is important
for any TCP extension to adapt its congestion window to
ensure that bottleneck bandwidth remains fully utilized.

4.2 Varying RTT

In real internet scenarios, the hosts can be distributed over
the large span of geographical area. Such hosts can be mod-
elled by varying the propagation delays between the nodes
in the simulation environment. Hence, in this scenario, we
change the RTT values between the bottleneck routers from
10 milliseconds to 1 second, while keeping other values fixed
as shown in Table 3.

Figure 6 and 7 depict the simulation results obtained by
varying the RTT values between the bottleneck routers in
dumbbell and parking lot topology. The results clearly de-
pict the performance of each TCP extension, and how its
behavior differs from other TCP extensions.

4.3 Varying the Number of FTP Flows

This scenario is designed to test the performance of TCP
extensions by varying the traffic load. We run a series of
simulations by varying the number of forward FTP flows
from 1 to 100. Other simulation parameters listed in Ta-

28

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2

Seattle, Washington, USA - June 15-16, 2016

Link Utilization with Bandwidth Changes

100 e
80
g 60 o
§ B
T
&
5
€ 4
-
20
Tahoe ——
Reno
Newreno -~
Westwood &
Westwood+
0
1 10 100

Bandwidth (Mops) Log Scale
(a) Aggregate bandwidth utilization.

Packet Drop Rate with Bandwidth Changes

| Tahoe ——
t Reno
8 1 Newreno -~ |
\ Westwood &
| Westwood+
i
|
i
6 i
|
H i
E | o
g 4 i
[}
I | Ll
2 |
¥ |
o} \
o \
) i
0 — g
1 10 100
Bandwidth (Mops) Log Scale
(b) Packet drop rate.
Percent of Mean Queue Length with Bandwidth Changes
100
Tahoe ——
] Reno
T 1“ Newreno -~
; Westwood &
L Westwood+
80
S
<
£ 6
I
o
-
o
3
o
3
c 4 4
4
[}
b
a "\
2
3
\
0
1 10 100

Bandwidth (Mops) Log Scale

(¢) Mean queue length.

Figure 4: TCP performance results for changing
bandwidth for dumbbell topology.

Link Utiization with Bandwidth Changes

100 ——
a = ¥
80
o} 5 g 4
)
c
2
5
€ 4
-
20
Tahoe —+—
Reno
Newreno ---%--
Westwood &
0 Westwood+
1 10 100
Bandwidth (Mbps) Log Scale
(a) Aggregate bandwidth utilization.
Packet Drop Rate with Bandwidth Changes
T T
| Tahoe —+—
| Reno
8 { Newreno ---%--- -
| Westwood &
| Westwood+
a
‘x
1
6 1
g
2
a
[4
5 :
[}
]
o
o}
o
2 g
0
1 10 100
Bandwidth (Mops) Log Scale
(b) Packet drop rate.
Percent of Mean Queue Length with Bandwidth Changes
100
Tahoe —+—
Reno
Newreno -~
Westwood &
Westwood+
80
S
'é, 60
o
-
o
3
3 B
? 40
@
[}
b
2]
20
0
1 10 100
Bandwidth (Mbps) Log Scale
(¢) Mean queue length.
Figure 5: TCP performance results for changing

bandwidth for parking lot topology.

29

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

Link Utiization with RTT Changes Link Utiization with RTT Changes
T
100 100
N R
& ! &
. | ’_\ 8
c 60 7 1 c 60
2 \ o
5 5
€ H
3 4 540
a Tahoe —— 2 Tahoe —+—
Reno Reno
Newreno -~ Newreno ---%--
Westwood & Westwood &
0 Westwood+ 0 Westwood+
0.01 0.1 1 0.01 01 1
RTT (s) Log Scale RTT (s) Log Scale
(a) Aggregate bandwidth utilization. (a) Aggregate bandwidth utilization.
Packet Drop Rate with RTT Changes Packet Drop Rate with RTT Changes
Tahoe —+— " Tahoe ——
Reno Reno
8 Newreno -~ 8 Newreno ---%--- -
. Westwood @ Westwood &
o Westwood+ 0 Westwood+
a o]
6 6
g g o
2 o 2
a a
[4 [4
g4 8 g«
[} [} .
3]
& & Gl
o o
2 2
— n S
4
0 EN———— 7 0 T
0.01 01 1 0.01 0.1 1
RTT (s) Log Scale RTT (s) Log Scale
(b) Packet drop rate. (b) Packet drop rate.
Percent of Mean Queue Length with RTT Changes Percent of Mean Queue Length with RTT Changes
100 100
Tahoe —— Tahoe —+—
Reno Reno
90 Newreno --%--- 90 Newreno ---%---
Westwood & Westwood &
Westwood+ Westwood+
80 80
70 70
% 60 'é, 60
3 S
v ° =S
3 3 .
g g — * a
¢} ¢} N a .
c c ¥
* \
B L] % L
\ 20
* :
\ Lo
*
10 10 7
\\‘J N /
0 0
0.01 01 1 0.01 01 1
RTT (s) Log Scale RTT (s) Log Scale
(¢) Mean queue length. (¢) Mean queue length.
Figure 6: TCP performance results for changing Figure 7: TCP performance results for changing
RTT for dumbbell topology. RTT for parking lot topology.

30

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2

Seattle, Washington, USA - June 15-16, 2016

100

Link Utilization with FTP Changes

=

il

Link Utilization (%)

Tahoe ——

Westwood+

10
FTP Log Scale

100

(a) Aggregate bandwidth utilization.

Packet Drop Rate with FTP Changes

a

Westwood &
Westwood+

Packet Drop Rate (%)
~

FTP Log Scale

(b) Packet drop rate.

Percent of Mean Queue Length with FTP Changes

100

100

Mean Queue Length (%)

Tahoe ——
Reno
Newreno ---%--
Westwood &
Westwood+

10
FTP Log Scale

(¢) Mean queue length.

Figure 8 TCP performance results
FTP flows for dumbbell topology.

100

for changing

Link Utilization with FTP Changes

100 =y
2]
— a
a
o
80 I
a
)
c
2
T
&
5
oW
3
20
Tahoe —+—
Reno
Newreno ---%--
Westwood &
0 Westwood+
1 10 100
FTP Log Scale
(a) Aggregate bandwidth utilization.
Packet Drop Rate with FTP Changes
Tahoe —+—
Reno
8 NewReno --*-- 4
Westwood &
Westwood+
6

Packet Drop Rate (%)
-

2
1 10 100
FTP Log Scale
(b) Packet drop rate.
Percent of Mean Queue Length with FTP Changes
100
80
a
; ks
s 60 B
2 A
S * ’ °
0 i 8
3
o
5
c 4
@
3 -
b o
20
Tahoe —+—
Reno
Newreno -~
Westwood &
0 Westwood+
1 10 100
FTP Log Scale

Figure 9: TCP performance results
FTP flows for parking lot topology.

(¢) Mean queue length.

for changing

31

Workshop on ns-3 - WNS3 2016 - ISBN: 978-1-4503-4216-2
Seattle, Washington, USA - June 15-16, 2016

ble 3 remain fixed. Figure 8 and 9 depict the simulation
results obtained for dumbbell and parking lot topology re-
spectively. The bottleneck link utilization remains close to
90% for small number of FTP flows, and as expected, grad-
ually increases with the increase in traffic load.

All graphs presented for this scenario and previous two
scenarios are automatically generated using the shell scripts.
Instructions to reproduce these results are provided in the
Appendix.

5. CONCLUSION AND FUTURE WORK

In this paper, we present an implementation of TCP eval-
uation suite as a separate model in ns-3. We provide the
implementation details for every class and highlight the in-
teractions among them. Additionally, we demonstrate the
usage of our TCP evaluation model by comparing five TCP
extensions available in ns-3 in benchmark scenarios stated in
the internet drafts. The results are collected for aggregate
link utilization, mean queue length and packet drop rate,
and the statistics are generated in textual and graphical for-
mats.

We plan to further extend our implementation and add
other features suggested in the draft of ICCRG. We have
completed porting Tmix traffic generator to work with the
latest version of ns-3. The next step would be to integrate it
with our implementation and provide flexibility in terms of
using realistic traffic patterns for evaluating the performance
of TCP extensions.

6. ACKNOWLEDGMENTS

We would like to acknowledge the support of Gopika Pai,
H. J. Bhargav, Pratheek B., Sourabh S. Shenoy for helping
in the implementation of EvalStats class. Further, we would
like to acknowledge Radhesh Anand for correcting the parts
of this paper.

7. REFERENCES

[1] D. Hayes, D. Ros, L. L. H. Andrew, and S. Floyd.
Common TCP Evaluation Suite. Internet-Draft
draft-irtf-iccrg-tcpeval-01, Internet Engineering Task
Force, January 2015. Work in Progress.

[2] Network Simulator 3. https://www.nsnam.org, 2016.

[3] H. Shimonishi, M. Y. Sanadidi, M. Gerla,

C. Marcondes, and P. Vasu. TCP Evaluation Suite.
http://nrlweb.cs.ucla.edu/tcpsuite/index.html, 2007.
Evaluating New Congestion Control Schemes and Its
Impact on Standard TCP NewReno.

An NS2 TCP Evaluation Tool.
https://sourceforge.net /projects/tcpeval, 2007.

Y. Li, D. Leith, and R. N. Shorten. Hamilton Institute
TCP Evaluation Suite.
http://www.hamilton.ie/net/eval /hi2005.htm, 2007.
D. Hayes, D. Ros, L. Andrew, and S. Floyd. Common
TCP Evaluation Suite. https://bitbucket.org/hayesd,
July 2014.

Network Simulator 2. http://www.isi.edu/nsnam/ns,
2016.

S. Floyd and V. Jacobson. Random Early Detection
Gateways for Congestion Avoidance. Networking,
IEEE/ACM Transactions on, 1(4):397-413, 1993.

[7]

(8]

APPENDIX

In this section, we provide additional details about repro-
ducing the simulation scenarios described in this paper.

The latest version of ns-3 at the time of writing this paper
is ns-3.24 and the same has been used for implementing the
TCP evaluation suite. The modified ns-3.24 that contains
our TCP evaluation suite implementation can be obtained
from here'. All the results obtained from our suite get stored
in a new directory called tcp-eval-results in ns-3.24 di-
rectory.

TCP evaluation suite is implemented in src/tcp-eval
and its the classes can be found at src/tcp-eval/model.
The helper for point to point parking lot topology
is located at src/point-to-point-layout/model/point-
to-point-parking-lot{.h, .cc}. drive-dumbbell.cc
and drive-parking-lot.cc are available at src/tcp-
eval/examples. Several command line arguments can be
passed to both; more details can be found in the respective
files. Lastly, six shell scripts are provided in ns-3.24 direc-
tory that reproduce the graphs presented in Section 4 of this
paper. Each shell script produces three graphs, and if La-
Tex is found installed on the machine, it places the graphs
in respective PDF files on successful completion.

"https://github.com/dharmendra-mishra/wns3-2016

32

