
Web server and Apache

Francesco Zampognaro

Marco Bonola

History

• WWW is recent in definition with regard to other
protocols and TCP/IP

• First introduced in 1989; first working server in 1990.

• First web page ever back online at its original URL:
http://info.cern.ch/hypertext/WWW/TheProject.html

• This page was retrieved from a later 1992 backup, the
very original page was lost:
– 48 copies of the 600 year-old Gutenberg bible exist, yet

not one copy of the original first website made just thirty
years ago is available.

12/3/2019

Number of Websites
Src: https://news.netcraft.com/archives/category/web-server-survey/

Methodology: https://www.netcraft.com/active-sites/

2019: response by 1,477,803,927 sites, 229,586,773 unique domains, and

8,366,753 web-facing computers

Apache

• Developed by the Apache Software Foundation (v.1 released April
1995)

• Bundled in the (once but still) popular “LAMP” package (Linux
Apache Mysql Php)

• in netkit we already have a simple Apache 2.2.9 installed – with
fewer options

• Install apache2 on the Linux host (available for all platforms).
– apt-get install apache2

• Start / stop:
– /etc/init.d/apache2 start

– /etc/init.d/apache2 stop

• Open browser and go to http://localhost
– Change the content in /var/www

try!

Src https://news.netcraft.com/archives/category/web-server-survey/

Apache diffusion

Cloudflare changed

Server from nginx to

“cloudflare”

(nginx based)

Where to study

• Apache Server 2 - Mohammed J. Kabir

– Hungry Minds

• Apache Server 2 Official Documentation

– http://httpd.apache.org/docs/2.0/

Web servers processing

• Serve many clients

– Many requests from same client!!

• Parallelism needed

94 requests for just the homepage

Processes vs Threads

• Both threads and processes are methods of
parallelizing an application

• Processes are independent execution units that
contain their own state information, use their
own address spaces, and only interact with each
other via inter-process communication (IPC)
mechanisms

• Threads share the same state and same memory
space, and can communicate with each other
directly, because they share the same variables

Are your cgi library thread safe?

Apache Architecture

• small core

• several modules
– compiled statically or

loaded dynamically

• Cross platform

utilities (APR)

• MultiProcessing

Modules
– Deals with o.s. to handle

multiple parallel requests

HTTPD

MPM

v2

MPM

v2

Module
Module

Module

Module

APR (Apache Portable

Runtime)

Operating System

Apache Web server files

/usr/sbin/apache2 Apache 2 server binary

/usr/sbin/apache2ctl Apache2 control interface (configtest could help!)

/etc/apache2/apache2.conf default configuration file (could be overwritten during apache upgrade)

/etc/apache2/httpd.conf User/legacy configuration files (and files inside /etc/apache2/conf.d)

/etc/apache2/conf.d other configuration files (included as well in apache2.conf)

/etc/apache2/ports.conf Listening ports (and virtualhosting) main config

/etc/apache2/sites-available configuration files for virtual hosting

/etc/apache2/sites-enable symbolic links to sites-available files (created with a2ensite, a2dissite)

/etc/apache2/mods-available configuration files for modules

/etc/apache2/mods-enabled symbolic links to mods-available files (created with a2enmod,

a2dismod)

/var/log/apache2 log files

Apache Modules

• Apache has modular architecture:

– To enable/disable modules : a2enmod / a2dismod

MODNAME

– configurable via commands

• apache2ctl –M #list of modules

– mod_so load module at runtime (Dynamic Shared

Object (DSO) mechanism) LoadModule

Apache MultiProcessing Module

• MultiProcessing Modules (MPMs) since Apache2:

– In apache 1.3 uses a preforking architecture

• the parent creates/destroys children if required

• does not work well on some platform (such Windows)

– MPM offers several alternatives (implemented in MPM

modules) :

• prefork MPM (like Apache 1.3)

• worker MPM (multiple child, each one with several threads)

• winnt MPM: single process, multithread (specific for windows)

• event MPM: like worker, improved (dedicated thread to deal with

the kept-alive connections)

We can tune parameters in

/etc/apache2/apache2.conf

• Check which apache mpm we currently use

– apache2ctl -V | grep -i mpm

• List Available MPM Modules

– ls /etc/apache2/mods-available/mpm*

• List enabled MPM modules

– ls -l /etc/apache2/mods-enabled/mpm*

Configuring Apache

• ~ 360 directives (!!!). Few

selected:

– ServerRoot: path to

configuration, error and log

files

– PidFile

– ServerName: name and port of

the server

– DocumentRoot: where find files

to serve

– ErrorDocument: override

standard error messages

Apache “content” folders

• DocumentRoot can be specified in the main config files (obsolete):
/etc/apache2/httpd.conf or apache2.conf

• Best practice: available “sites”
– /etc/apache2/sites-available

• Sites enabled (by command a2ensite) creates a symbolic link into
– /etc/apache2/sites-enabled

• This was done to support easier adding-removing of a web site and
support virtual hosting (more on that later). Simplest site.conf

<VirtualHost *:80>

ServerAdmin webmaster@localhost

DocumentRoot /var/www/html/site1

</VirtualHost>

DocumentRoot

• Where apache finds your documents (html

files etc)

– Typically search for: index.html index.cgi index.pl

index.php index.xhtml index.htm

– Defined from DirectoryIndex (order matters)

<html>

<body>

<h1>

HELLO CGRL

</h1>

</body>

</html>

index.html sample file

Logging

• location and content: CustomLog directive

• Format: LogFormat

– specified with common logfile format*

(*) http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format

Logrotate

• rotate at most 52 times, weekly

• compress (you can see that using zcat, zless or

pipelining gzip and cat/tail)

Log Size: Typically 1 MB for 10000 requests so…

/etc/logrotate.d/apache2

not only for

apache!

Mining/security

• Access logs, error logs can be huge files.

• AW statistics
https://www.nltechno.com/awstats/awstats.p
l?config=destailleur.fr&month=04&year=2018

• SCALP treats identification (post processing):
https://code.google.com/archive/p/apache-
scalp/ (enable mod_security!)

• fail2ban: scans logfile in realtime to identify
malicious access

Apache benchmarking

• ab (Apache HTTP server benchmarking tool)

• ab -n 1000 -c 5 http://URL_TO_TEST/index.html

send 1000 req concurrency number

Reference documentation:

http://httpd.apache.org/docs/2.2/programs/ab.html apt-get install apache2-utils

Exercise 1

• Create a lab with two machines, server1 and
client1.
– on server1 startup: /etc/init.d/apache2 start

– by default site “default” is enabled (as 000-default)

• Replace default site (disable it) with a test config

• Optional try apache benchmarking from client1
to server1

• Warning: page/s is not the only thing to consider

• Try as well a “larger” file created with dd

dd if=/dev/urandom of=file.txt bs=1k
count=100

Virtual Hosting

• Problem: Several websites, one webserver

– Typically: name-based virtual host (with help of

DNS!)

/dir/site1/

/dir/site2/

HTTP Request

HTTP Response

Virtual Hosting: example
IP/Port for listening

requests. Enabling “name-

based” VHost. ports.conf

Name of the virtual

host (match host http

field). Put into

site1.conf

Second site. Put into

site2.conf

use /etc/hosts to test virtual host without DNS modifications

put virtual hosts configs in

sites-available dir!

NameVirtualHost *:80

Listen 80

Exercise 2: virtual hosting

1. Create two dirs “cgrl-web” and “cgrl-mail”. Put in these
directories two different index.html files

2. Configure 2 virtual web hosts
– www.studenti.cgrl.edu

– webmail.studenti.cgrl.edu

3. enable them on server1 and restart apache2 – disable
default site (or edit server1.startup accordingly for auto-
startup)

1. a2ensite cgrl-web

2. a2ensite cgrl-mail

4. modify nameserver (or /etc/host) configuration
– Ping to verify they have the same IP

5. View your websites with the text browser from client1
(lynx or links).

HTTPS

• Establish confidentiality (end-to-end) BEFORE
actual data transfer (both requests and
responses):

– Use of port 443/TCP

– Use of TLS protocol (typically TLS1.2, today
TLS1.3). Older versions unsupported (SSLv3).

– Asymmetric encryption, public keys distributed by
X.509 certificates.

– Server hosts a private key, used to cypher the
traffic. Should I trust the Server?

HTTPS
• HTTPS is possible with self-signed certificates

– Traffic is encrypted, leveraging “local” certificate

– Warning by clients (add exception)

– I might not be really sure that the server is who says it is
• Ok for local services (intranet), or testing setups

HTTPS

• Trough a Verification entity, who releases the
certificates and verify that private key is entrusted to
who effectively hosts the target domain(s).

• Payed service, several companies available, eg.

– https://www.cheapsslshop.com/

HTTPS

• Let’s encrypt: free. https://letsencrypt.org/
– Let’s make the whole Web secure!

https://blog.mozilla.org/security/2015/04/30/deprecating-non-
secure-http/

– Limited applicability (only domain, not IP, not company wide;
short duration)

– Scripts included in Debian

HTTPS VirtualHosting

• “GET” request, including target URL, is only
available AFTER the TLS handshake. Therefore,
server can only use a “default” certificate to start,
which might not be the one specifically built for
that host name
– https://wiki.apache.org/httpd/NameBasedSSLVHosts

WithSNI

• Solution:
– use multiple domains certificates (not scalable)

– use Service Name Identification SNI extension,
available since Apache 2.2.12 (RFC 4366). Require also
web browser support. Today it is the default for all.

HTTPS lab config
• Self-signed certificate (we can not use Let’s encrypt,

since we need a REAL DNS resolution). Virtual HTTPS
hosting in netkit’s Apache2 is not available 

• A self-signed certificate is already available in netkit
(expired in 2018)

• By the way, we can create our own certificate:

mkdir /tmp/certificates

cd /tmp/certificates

openssl req -x509 -newkey rsa:4096 -keyout apache.key -out apache.crt -days 365 -nodes

Country Name (2 letter code) [AU]: IT

State or Province Name (full name) [Some-State]: RM

Locality Name (eg, city) []: Rome

Organization Name (eg, company) [My Company]: CGRL

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []: www.studenti.cgrl.edu

Email Address []:webmaster@cgrl.edu

HTTPS lab config

Enable SSL (this also enable listening on port 443 at reload; see ports.config):

a2enmod ssl

Create and edit in sites-available «cgrl-sec.conf» file and then enable it:

a2ensite cgrl-sec

Root can be the same of non-HTTPS, or point to a new DocumentRoot!

<IfModule mod_ssl.c>

<VirtualHost _default_:443>

ServerAdmin cgrl-webmaster@cgrl.edu

ServerName www.cgrl.edu

DocumentRoot /root/cgrl-web

ErrorLog /var/log/apache2/cgrlweb.log

LogLevel warn

CustomLog /var/log/apache2/access.log

combined

SSLCertificateFile /etc/ssl/certs/ssl-cert-

snakeoil.pem

SSLCertificateKeyFile /etc/ssl/private/ssl-cert-

snakeoil.key

SSL Engine Switch:

Enable/Disable SSL for this virtual host.

SSLEngine on

</VirtualHost>

</IfModule>

Exercise 3 HTTPS (optional)

• Create custom self-signed certificate

• Adjust the lab config to make server to be

reachable by the host machine (tap interface):

– server1[0]=tap,10.250.1.1,10.250.1.2

• Test both HTTP and HTTPS pointing to the

same folder using hosts’ browser (e.g.,Firefox)

Standard Container Directives

• Many Container contexts:

– <VirtualHost ...>: already seen…

– <Directory>: applies one or more directives to a

directory

– <Files>: applies one or more directives to a file

– <Location>: applies one or more directives to a URL

• AllowOverride: enable/disable directories

directives overriding.

• .htaccess: default filename for the per-directory

configuration

Options directive

Options +Setting1 – Setting2

Allow-Deny

• First, all Allow directives are evaluated in order; at least one must match,

or the request is rejected (deny). Next, all Deny directives are evaluated. If

any matches, the request is rejected. Last, any requests which do not

match an Allow or a Deny directive are denied by default.

A domain name, IP, network/netmask (CIDR)

Exercise 4: directory listening

1. Take the previous example

2. Create a directory in your DocumentRoot
“myfiles” and put some stuff (try a symbolic link)
inside that

<Directory /your/dir/myfiles>

Options +Indexes

</Directory>

3. Create a directory inside “myfiles”:
“mysecretfiles”:

<Directory /your/dir/myfiles/mysecrefiles>

Options -Indexes

</Directory>

.htaccess
• Same syntax as the main configuration files

– so use <Directory> block instead (it’s faster!)

– Common misconception: not specifically for passwords

or rewrite!

• “AllowOverride” : Types of directives that are

allowed in .htaccess files (None, All, one or more

directive inside these groups: {AuthConfig,

FileInfo, Indexes, Limit, Options})

Exercise 5: .htaccess password

protection

• Let we create a new file with passwords:

– htpasswd –c PASSWORDFILE USERNAME

– Then put these directives in .htaccess (or <Directory>)

• Now protect our “secret” file...

– P.s. passwords are hashed (MD5)

password file

users Change the user and group
ownership of .htdigest file to
apache.# # # # chown apache:apache /usr/local/apache2/.htdigest
Remove read permissions of others
for the .htdigest file.chmod o-r /usr/local/apache2/.htdigest

What we did?

• Authentication

– process by which you
verify that someone is who
they claim he is

• Authorization

– someone is allowed to be
where they want to go, or
to have information that
he wants to have

HTTP Basic Authentication

Get FILE

401 Unauthorized

Get FILE, Authorization: Basic XXXXXXXX

200 OK

Credentials??
• Client sends passwords in clear text. Maybe ok on HTTPS….

• Let’s switch to digest:
– htdigest –c PASSWORDFILE REALM USERNAME

– AuthType Digest

– AuthName REALM

– AuthDigestProvider file

– AuthDigestDomain /

– Then update these directives in .htaccess (or <Directory>)

• Realm is the domain of the host performing authentication.
I.e., users@example.com or “Private Area”.

• Now avoid going sending passwords “in clear”. Nonce
avoids replay attacks.

• Anyways, access is normally done with login forms and
sessions, using server side programming…

HTTP Digest Authentication

Get FILE

401 Unauthorized, nonce

Get FILE, Authorization: Digest MD5(pass, nonce…)

200 OK

Static web pages

REQUEST

RESPONSE

returns the content of

a file

REQUEST

RESPONSE

passes the request to a

program and return its

output

Dynamic web pages

client-side

scripting

server-side

“scripting”

Client-side scripting

languages

• javascript

• actionscript

• C/C++

• bash (!)

• Perl

• ASP

• PHP

• Java

• Python

• Lua

• Ruby

• Javascript (!!)

• …

Server-side “scripting”
languagues

YOU CAN NOT DO

WHATEVER YOU

WANT

YOU DO

WHATEVER YOU

WANT

Common Gateway Interface

• Standard way to delegate the generation of web pages to

executable files

• processes isolated from the core Web server

• Check the lab
for an example!

– www.cgrl.edu/cgi-bin/env.cgi

– www.cgrl.edu/cgi-bin/interact.cgi

rfc 3875 (2004)

used since 1991

http://httpd.apache.org/docs/2.0/howto/cgi.html

mod_cgi

FastCGI

• CGI: every time you access to a page, you call a
program whose output generate the HTTP
response

– Launching/Quitting one program per request could
cost a lot!

• mod_fcgid starts a sufficient number instances of
the program to handle concurrent requests, and
these programs remain running to handle further
incoming requests.

– Significantly faster!

mod_fcgid

Server Side Include

• They are “directives that are placed

in HTML pages, and evaluated on the

server while the pages are being

served.”

Options +Includes

and

AddType text/html .shtml

AddOutputFilter INCLUDES .shtml

common directives examples

include <!--#include virtual="header.html" -->

exec <!--#exec cgi="/cgi-bin/foo.cgi" -->

<!--#exec cmd="ls -l" -->

echo <!--#echo var="REMOTE_ADDR" -->

if, elif, else, endif (control directives)

mod_include

PHP

LoadModule php5_module modules/libphp5.so

<FilesMatch \.php$>

SetHandler application/x-httpd-php

</FilesMatch>

A "handler" is an internal

Apache representation of

the action to be performed

when a file is called

Installed on more than 20 million Web sites and 1 million web server! used by:

wordpress, joomla

facebook, flickr

and many more!

source: http://en.wikipedia.org/wiki/PHP#cite_note-54

Model View Controller (MVC) frameworks

mod_passenger (aka mod_rails)
LoadModule passenger_module ...

PassengerRoot ...

PassengerRuby ...

mod_wsgi

WSGI: python standard to communicate with

web server

WSGIScriptAlias /

/path/to/mysite.com/mysite/wsgi.py

Mod Rewrite

• Goal: rewrite an URL to another

• Why? typical: user friendly URL

• How?
– LoadModule rewrite_module modules/mod_rewrite.so

– AddModule mod_rewrite.c

– RewriteEngine on

not necessarily in .htaccess

http://netgroup.uniroma2.it/people/postdoc/marco-bonola/

http://netgroup.uniroma2.it/index.php?post=258&cat=43422342

Mod Rewrite (example)

• Change /myapp/index.html with

welcome.html

Mod Rewrite

RewriteRule ^/shortcut$ /complicated/and/way/too/long/url/here

RewriteRule /products/([0-9]+) /siteengine/products.php?id=$1

RewriteRule ^/products/([0-9]+),([ad]*),([0-9]{0,3}),([0-9]*),([0-9]*$)

/test/index.php?id=$1&sort=$2&order=$3&start=$4

Examples of rules:

RewriteRule

PATTERN SUBSTITUTION [FLAGS]

Define a rule: if find a pattern in the URL,

then substitute.

Flags: send headers to

browsers (e.g. 401)

RewriteCond %{HTTP_USER_AGENT}

^Mozilla.*

Apply the next rule only in this condition is

true. Rules are applied only if ALL the

previous conditions are true

“non-HTTP” authentication

HTTP GET (index.html)

returns the HTML code

for a login form

(method = POST/GET)

HTTP POST (credentials fed to

action_page.php)

RESPONSE

Process the request with

server side scripting.

Check users external

database

Login

successful

RESPONSE

Create a

local session

identifier
Cookie!

Note: Any forms involving sensitive information like passwords should be served over HTTPS.

Auth ok?

Client side scripting

• Actions performed by the web browser. Very limited
for security reasons (ie. no access to local disk)

• HTML5 allows some more degree of actions

• In practice all current web HTML pages require client
side scripting to perform some dynamic action:
– Send asynchronous message to servers (AJAX)

• Display values on a chart in realtime

• Fast-forward of a video

– https://www.w3schools.com/js/tryit.asp?filename=tryjs_ti
ming_clock

– We may MD5 the password before sending it… warning:
the hash becomes the password! Needs some “salt”
(nonce)

login.php

<script>

function hash_pswd_nonce() { ….

[…]

return true

} </script>

<?php

session_start();

//Check nonce against session

if(isset($_POST) && $_POST["nonce"] === $_SESSION["csrf"]){

//use nonce+password for MD5 check

//redirect to private page

}

//generate new nonce for form

$_SESSION["csrf"] = uniqid(mt_rand(),true);

?>

<form method="post" action="login.php" onsubmit= "return hash_pswd_nonce();" >

<input type="hidden" name="nonce" value="<?php echo $_SESSION['csrf']; ?>"/>

Login: <input type="text" name="user">

Password: <input type="password" name="password">

<input type="submit" value="Submit">

</form> Avoid Cross-site request forgery (CSRF)

Client side

Server side

