Spring

Enterprise Framework

What's Spring?

» “Spring Framework is a Java platform that
provides comprehensive infrastructure
support for developing Java applications”

» “Spring handles the infrastructure so you
can focus on your application”

» “Spring enables you to build applications
from ‘plain old Java objects’ (POJOs) and

to apply enterprise services non-invasively
to POJOS”

Spring main reference: http://docs.spring.io/spring/docs/3.0.x/reference/overview.html

http://docs.spring.io/spring/docs/3.0.x/reference/overview.html

Inversion of Control (loC)

Design technique that delegates invoking a behavior to an assembler at runtime

Example: program to get and process information from a user

Command line version

fruby

puts 'What is your name?’
name = gets
process_name(name)

\
buts 'What 1s your quest
= Y .

process_quest(quest)

Graphical version

require 'tk’

root = TkRoot.new()

name_label = TkLabel.new() {text "What 1is Your Name?"

name_label.pack

name = TkEntry.new(root).pack

name.bind("FocusOut”™) {process_name(name) }

quest_label = TkLabel.new() {text "What is Your Quest?
quest_label.pack

quest = TkEntry.new(root).pack

quest.bind("FocusOut") {process_quest(quest)}

- : PR
Tk.mainloop()

Lt

J

Inversion of Control (loC)

Example: program to get and process information from a user

Command line version

fruby

puts 'What 1s your name?’

name = gets

process_name (npme)

puts

quest = gets

C
M
L]
ct
o

What 1s your quest:

Graphical version

require 'tk’
root = TkRoot.new()
name_label = TkLabel.new() {text "What is Your Name?"}

name_label.pack

name = TkEntry.new(root

name.bind("FocusOut”" Y {process_name(name) }

quest_label = TklLabel.new o - s

a2

Your Quest?"}
quest_label.pack

quest = TkEntry.new(root
quest.bind("FocusQut")

Tk.mainloop()

Control goes from my command line program module to the event manager
module, which is instructed via "bind“

This is l1oC, aka “Hollywood principle: don’t call us, we’ll call you”

http://martinfowler.com/bliki/InversionOfControl.html

© Manuel Mastrofini

4

http://martinfowler.com/bliki/InversionOfControl.html

Dependency Injection (DlI)

* Design pattern to create an object O1 another
object O2 relies on, without knowing, at compile
time, which class O1 is instance of

* 3roles
— Dependent consumer

— Interface contract

— Injector: create instances of classes implementing the
interface contract and inject the dependency on the
dependent consumer

o The injector selects the class to instantiate

Spring heavily leverages loC and DI

Spring loC Container (loCC)

\Your Business Objects (POJOs)

» The Sprin
Configuration Contapinerg
Metadata
produces

Fully configured system

Ready for Use

© Manuel Mastrofini

Spring loC Container (loCC)

\Your Business Objects (POJOs)

N\ o The Sprin
Configuration Contarijne?
Metadata
produces

_ — = Spring
Beans

Fully configured system

Ready for Use

© Manuel Mastrofini

Configuration Metadata for 10CC

» 3 techniques
— XML-Based configuration
— Annotation-based configuration

o Annotating classes, attributes, methods

— Java-based configuration

o Meta-data hard-coded in a Java Class

Spring Bean Autowiring

« Automatic inspection of Spring-managed beans

— When a dependency of a bean on another bean is
detected, it is resolved by the 10CC

« Mark a field as @Autowired (Spring-specific) or
@Inject (Java standard)

Annotation-Based Configuration

* @Component
— ldentifies a generic Spring-managed bean

* @Service, @Controller and @Repository are
specialization of @Component for future use

— @Repository identifies a DAO

— @Service annotates beans of the service layer
(i.e. controllers in MVC)

— @Controller annotates beans of the presentation
layer (i.e. the layer between web view and service
layer, e.g. the one managing navigation among
pages)

Spring Framework Overview

Spring Framework Runtime
Data Access/lntegratlon Web
(MVC / Remoting)
Web Servlet
b o, - S
i T g ™\
Portlet Struts
Transactions J 9 S 7
\ v, 9 =
(7 N
AOP] Aspects] [Instrumentation
_ kR 3
- : a
Core Container
Expression
[Beans J [Core J L Context] { Language J
\. v
{ Test)

—

11

Spring Framework Overview

fSpring Framework Runtime ’
5 7 N
Data Access/lntegratlon Web
(MVC / Remoting)
Web Servlet
- A g vy
's =2 (-)
Portlet Struts
Transactions J 9 S 7
\ v, 9 =

Core Container

—_eeEs

P,

Spring Framework Overview

e Core Container

— Beans
o Bean definitions and management
— Core
o Inversion of Control Container and Dependency Injection features
= BeanFactory is the main interface
— Context
o Java EE features for framework-managed objects
= ApplicationContext is the main interface
— Expression Language

o Querying and manipulating framework-managed objects at
runtime

Spring Web

¢ We b sPring Za::w::cz‘;z:tegration i
. . =3
o Features for multipart file
management, web JEEZ=TND
services... (o
N Core Container
Servlet (o) oo [e [ﬂ
o Spring’'s MVC k(=)

implementation
* Portlet

o Struts

14

Spring MVC

« Spring component to support the development of web applications

» Web applications require

— Dispatcher servlet

o Server-side component that intercepts web requests and decides the Spring
controller that will manage each request

— Handler Mappings

o Configuration to bridge the Dispatcher servlet and controllers

— Controller
o Java class and Spring bean that processes requests and produce valuable output

— GUI resources (View)
o E.g. HTML pages, CSS, Javascript

— View resolver

o Mediator between controllers and views to select which physical GUI resources
are used to render certain outputs

Spring MVC Annotations

* @RequestMapping

— Maps a URL to a method of a Controller class to execute
when opening such URL

 @RequestParameter

— POST parameter sent by the client and embodied in the
HTTP request

« @PathVariable
— GET parameter sent by the client

* @ResponseBody

— Return parameter serialized by the server and embodied
In the HT TP response

Spring REST

« REST
— REpresentational
— State
— Transfer

 Main REST constraints
— Client server (on the web)
— Stateless (no state stored between requests)
— Uniform interface for communication

* @RestController annotations is the same as
@Controller + @ResponseBody for all methods

JSON

 Javascript Object Notation

* Open standard to exchange data between
applications

» Used to exchange data between server
and client of a web application

— Alternative to XML

* Data types: number, string, boolean, array
and complex object

— null as special value

{

JSON Example

"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 25,
"height_cm": 167.6,
"address": {

}

"streetAddress": "21 2nd Street",

"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

"phoneNumbers": |
{
lltypell: Ilhome"’
"number": "212 555-1234"

b

"type": "office",
"number"; "646 555-4567"

}
1,

"children": [],
"spouse": null

Spring Data

Data Access/Integration
— JDBC

o Abstraction layer from vendor-specific
coding (e.g. exceptions)

— ORM

o Integration with popular Object-Relational
mapping APls, e.g. Hibernate

— OXM

o Integration with popular Object-XML
mapping APls, e.g. JAXB

— JMS
o Features for message exchange

— Transactions

o Feature for declarative and programmatic
transactions management

-

Web
(MVC / Remoting)

(o o)

J| (] (=]

ey

Core Container

(

Test

)

o

20

Spring Data Annotations

* @Repository
— Mark a class/interface as DAO

— Can be a class

o Implement JPARepository and define custom methods
= Leverage the EntityManager
= Leverage ORM specific features

— Can be an interface

o Define operations according to some “convention”

o Obtain their implementations automatically
= Generated and provided by Spring
= E.g. findByUsernameAndPassword(String username, String password)
= E.g. findByNameLike(String nameLike)

Spring Data

Table 10. Query keywords

Logical keyword

AND

OR

AFTER

BEFORE
CONTAINING
BETWEEN
ENDING_WITH
EXISTS

FALSE
GREATER_THAN
GREATER_THAN_EQUALS
IN

IS
IS_NOT_NULL
IS_NULL
LESS_THAN
LESS_THAN_EQUAL
LIKE

NEAR

NOT

NOT_IN
NOT_LIKE
REGEX
STARTING_WITH
TRUE

WITHIN

Keyword expressions

And

or

After, IsAfter

Before, IsBefore

Containing, IsContaining, Contains
Between, IsBetween

EndingWith, IsEndingWith, EndsWith
Exists

False, IsFalse

GreaterThan, IsGreaterThan
GreaterThanEqual, IsGreaterThanEqual
In, IsIn

Is, Equals, (or no keyword)

NotNull, IsNotNull

Null, IsNull

LessThan, IsLessThan
LessThanEqual, IsLessThanEqual
Like, IsLike

Near , IsNear

Not, IsNot

NotIn, IsNotIn

NotLike, IsNotLike

Regex , MatchesRegex , Matches
StartingWith, IsStartingWith, StartsWith
True, IsTrue

Within, IsWithin

22

Spring Boot

Spring Initializr X

C {) @& Secure | https;//start.spring.io

SPRING INITIALIZR

Generate @ wawenroec + With Spring Boot 152 v

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies

com.example e e t
Artifact Selected Dependencies

demo
Name

demo
Description

Demo project for Spring Boot

Package Name

com.example

Packaging

Jar v

Java Version

18 v
Language v

© Manuel Mastrofini
23

Spring Boot

€ New Project

Dependencies (Q) Spring Boot [1.5.2 - | Selected Dependencies
Web (] Reactive MongoDB Security %
Template Engines () cassandra
SQL (] Couchbase Web
NoSQL () Neosj Web X
Cloud Core O Redis
Cloud Config SQL

. (] Gemfire
Cloud Discovery JPA X
Cloud Routing [solr s y
Cloud Circuit Breaker () Elasticsearch
Cloud Tracing NoSQL
Cloud Messaging MongoDB X
Cloud AWS
Cloud Data Flow /0o
Cloud Cluster Activiti X
Cloud Contract
Pivotal Cloud Foundry
Social
1/0
Ops

MongoDB

MongoDB NoSQL Database, including
spring-data-mongodb

Previous M‘ Cancel J{ Help J

24

© Manuel Mastrofini

