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What’s Spring?
• “Spring Framework is a Java platform that 

provides comprehensive infrastructure 
support for developing Java applications” 

• “Spring handles the infrastructure so you 
can focus on your application”

• “Spring enables you to build applications 
from ‘plain old Java objects’ (POJOs) and 
to apply enterprise services non-invasively 
to POJOs”

http://docs.spring.io/spring/docs/3.0.x/reference/overview.html
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http://martinfowler.com/bliki/InversionOfControl.html


Dependency Injection (DI)
• Design pattern to create an object O1 another 

object O2 relies on, without knowing, at compile 
time, which class O1 is instance of

• 3 roles
– Dependent consumer
– Interface contract
– Injector: create instances of classes implementing the 

interface contract and inject the dependency on the 
dependent consumer
o The injector selects the class to instantiate

Spring heavily leverages IoC and DI
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Configuration Metadata for IoCC

• 3 techniques
– XML-Based configuration
– Annotation-based configuration

o Annotating classes, attributes, methods

– Java-based configuration
o Meta-data hard-coded in a Java Class



Spring Bean Autowiring
• Automatic inspection of Spring-managed beans

– When a dependency of a bean on another bean is 
detected, it is resolved by the IoCC

• Mark a field as @Autowired (Spring-specific) or 
@Inject (Java standard)



Annotation-Based Configuration
• @Component

– Identifies a generic Spring-managed bean
• @Service, @Controller and @Repository are 

specialization of @Component for future use
– @Repository identifies a DAO
– @Service annotates beans of the service layer 

(i.e. controllers in MVC)
– @Controller annotates beans of the presentation 

layer (i.e. the layer between web view and service 
layer, e.g. the one managing navigation among 
pages)
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Spring Framework Overview
• Core Container

– Beans
o Bean definitions and management

– Core
o Inversion of Control Container and Dependency Injection features

▪ BeanFactory is the main interface

– Context
o Java EE features for framework-managed objects

▪ ApplicationContext is the main interface

– Expression Language
o Querying and manipulating framework-managed objects at 

runtime



Spring Web
• Web
o Features for multipart file 

management, web 
services…

• Servlet
o Spring’s MVC 

implementation
• Portlet
• Struts



Spring MVC
• Spring component to support the development of web applications
• Web applications require

– Dispatcher servlet
o Server-side component that intercepts web requests and decides the Spring 

controller that will manage each request

– Handler Mappings
o Configuration to bridge the Dispatcher servlet and controllers

– Controller
o Java class and Spring bean that processes requests and produce valuable output

– GUI resources (View)
o E.g. HTML pages, CSS, Javascript

– View resolver
o Mediator between controllers and views to select which physical GUI resources 

are used to render certain outputs



Spring MVC Annotations
• @RequestMapping

– Maps a URL to a method of a Controller class to execute 
when opening such URL

• @RequestParameter
– POST parameter sent by the client and embodied in the 

HTTP request
• @PathVariable

– GET parameter sent by the client
• @ResponseBody

– Return parameter serialized by the server and embodied 
in the HTTP response



Spring REST
• REST

– REpresentational
– State
– Transfer

• Main REST constraints
– Client server (on the web)
– Stateless (no state stored between requests)
– Uniform interface for communication

• @RestController annotations is the same as 
@Controller + @ResponseBody for all methods



JSON
• Javascript Object Notation
• Open standard to exchange data between 

applications
• Used to exchange data between server 

and client of a web application
– Alternative to XML

• Data types: number, string, boolean, array 
and complex object
– null as special value



JSON Example
{
  "firstName": "John",
  "lastName": "Smith",
  "isAlive": true,
  "age": 25,
  "height_cm": 167.6,

"address": {
    "streetAddress": "21 2nd Street",
    "city": "New York",
    "state": "NY",
    "postalCode": "10021-3100"
  },

 

"phoneNumbers": [
    {
      "type": "home",
      "number": "212 555-1234"
    },
    {
      "type": "office",
      "number": "646 555-4567"
    }
  ],

  "children": [],
  "spouse": null

}



Spring Data
• Data Access/Integration

– JDBC
o Abstraction layer from vendor-specific 

coding (e.g. exceptions)

– ORM
o Integration with popular Object-Relational 

mapping APIs, e.g. Hibernate

– OXM
o Integration with popular Object-XML 

mapping APIs, e.g. JAXB

– JMS
o Features for message exchange 

– Transactions
o Feature for declarative and programmatic 

transactions management



Spring Data Annotations
• @Repository

– Mark a class/interface as DAO
– Can be a class

o Implement JPARepository and define custom methods
▪ Leverage the EntityManager
▪ Leverage ORM specific features

– Can be an interface
o Define operations according to some “convention”
o Obtain their implementations automatically

▪ Generated and provided by Spring
▪ E.g. findByUsernameAndPassword(String username, String password)
▪ E.g. findByNameLike(String nameLike)



Spring Data



Spring Boot



Spring Boot


