
Spring

Enterprise Framework

What’s Spring?
• “Spring Framework is a Java platform that

provides comprehensive infrastructure
support for developing Java applications”

• “Spring handles the infrastructure so you
can focus on your application”

• “Spring enables you to build applications
from ‘plain old Java objects’ (POJOs) and
to apply enterprise services non-invasively
to POJOs”

http://docs.spring.io/spring/docs/3.0.x/reference/overview.html

Inversion of Control (IoC)

Inversion of Control (IoC)

http://martinfowler.com/bliki/InversionOfControl.html

Dependency Injection (DI)
• Design pattern to create an object O1 another

object O2 relies on, without knowing, at compile
time, which class O1 is instance of

• 3 roles
– Dependent consumer
– Interface contract
– Injector: create instances of classes implementing the

interface contract and inject the dependency on the
dependent consumer
o The injector selects the class to instantiate

Spring heavily leverages IoC and DI

Spring IoC Container (IoCC)

Spring IoC Container (IoCC)

Configuration Metadata for IoCC

• 3 techniques
– XML-Based configuration
– Annotation-based configuration

o Annotating classes, attributes, methods

– Java-based configuration
o Meta-data hard-coded in a Java Class

Spring Bean Autowiring
• Automatic inspection of Spring-managed beans

– When a dependency of a bean on another bean is
detected, it is resolved by the IoCC

• Mark a field as @Autowired (Spring-specific) or
@Inject (Java standard)

Annotation-Based Configuration
• @Component

– Identifies a generic Spring-managed bean
• @Service, @Controller and @Repository are

specialization of @Component for future use
– @Repository identifies a DAO
– @Service annotates beans of the service layer

(i.e. controllers in MVC)
– @Controller annotates beans of the presentation

layer (i.e. the layer between web view and service
layer, e.g. the one managing navigation among
pages)

Spring Framework Overview

Spring Framework Overview

Spring Framework Overview
• Core Container

– Beans
o Bean definitions and management

– Core
o Inversion of Control Container and Dependency Injection features

▪ BeanFactory is the main interface

– Context
o Java EE features for framework-managed objects

▪ ApplicationContext is the main interface

– Expression Language
o Querying and manipulating framework-managed objects at

runtime

Spring Web
• Web
o Features for multipart file

management, web
services…

• Servlet
o Spring’s MVC

implementation
• Portlet
• Struts

Spring MVC
• Spring component to support the development of web applications
• Web applications require

– Dispatcher servlet
o Server-side component that intercepts web requests and decides the Spring

controller that will manage each request

– Handler Mappings
o Configuration to bridge the Dispatcher servlet and controllers

– Controller
o Java class and Spring bean that processes requests and produce valuable output

– GUI resources (View)
o E.g. HTML pages, CSS, Javascript

– View resolver
o Mediator between controllers and views to select which physical GUI resources

are used to render certain outputs

Spring MVC Annotations
• @RequestMapping

– Maps a URL to a method of a Controller class to execute
when opening such URL

• @RequestParameter
– POST parameter sent by the client and embodied in the

HTTP request
• @PathVariable

– GET parameter sent by the client
• @ResponseBody

– Return parameter serialized by the server and embodied
in the HTTP response

Spring REST
• REST

– REpresentational
– State
– Transfer

• Main REST constraints
– Client server (on the web)
– Stateless (no state stored between requests)
– Uniform interface for communication

• @RestController annotations is the same as
@Controller + @ResponseBody for all methods

JSON
• Javascript Object Notation
• Open standard to exchange data between

applications
• Used to exchange data between server

and client of a web application
– Alternative to XML

• Data types: number, string, boolean, array
and complex object
– null as special value

JSON Example
{
 "firstName": "John",
 "lastName": "Smith",
 "isAlive": true,
 "age": 25,
 "height_cm": 167.6,

"address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021-3100"
 },

"phoneNumbers": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "office",
 "number": "646 555-4567"
 }
],

 "children": [],
 "spouse": null

}

Spring Data
• Data Access/Integration

– JDBC
o Abstraction layer from vendor-specific

coding (e.g. exceptions)

– ORM
o Integration with popular Object-Relational

mapping APIs, e.g. Hibernate

– OXM
o Integration with popular Object-XML

mapping APIs, e.g. JAXB

– JMS
o Features for message exchange

– Transactions
o Feature for declarative and programmatic

transactions management

Spring Data Annotations
• @Repository

– Mark a class/interface as DAO
– Can be a class

o Implement JPARepository and define custom methods
▪ Leverage the EntityManager
▪ Leverage ORM specific features

– Can be an interface
o Define operations according to some “convention”
o Obtain their implementations automatically

▪ Generated and provided by Spring
▪ E.g. findByUsernameAndPassword(String username, String password)
▪ E.g. findByNameLike(String nameLike)

Spring Data

Spring Boot

Spring Boot

