
Essence Seminar
For University of Rome “Tor Vergata”

www.semat.org

Essence:
Software Engineering 
Essentialized
Giuseppe Calavaro, Ph.D.

http://semat.org/


G. Calavaro  2

Essence on OMG web site



G. Calavaro  3

Essence on Semat Web site



G. Calavaro  4

Agenda of this Seminar

Software Engineering concepts are given for granted

• Introduction to Essence

• The Basics of Software Engineering

• The Essence Language

• The Essence Kernel

• Conclusions: Reflections on Essence Goals and 
Theory of Software Engineering

• Appendix: A summary of Essence Concepts and Elements



Essence Seminar
For University of Rome “Tor Vergata”

www.semat.org

Introduction to Essence

Giuseppe Calavaro, Ph.D.
IBM Big Data Practice Leader
External Professor at University of Rome “Tor Vergata”

http://semat.org/


G. Calavaro  6

What is “Essence”?

• Essence is the kernel of a Software Engineering 
Theory as well as the language to describe such 
theory and the approach to describe methods and 
practices based on the theory

– It is available as an OMG specification and supported by a 
growing body of educational and other supporting material, in 
particular, a set of games, e.g., to identify the status of a project 
or to identify next steps. 

– Essence has been designed from the beginning as an 
educational tool and to allow students and practitioners alike to 
explore software processes with the help of clearly defined, 
easy-to-understand concepts and the support of the kernel



G. Calavaro  7

The Essence of our goal

1. Methods are compositions of practices

• A practice, that is like a mini-method, is a reusable approach to a well 
defined problem

• Practice examples: Requirements Management, Agile Development, 
Use Case Modeling, etc.

2. There is a common ground – Kernel- shared by all methods and 
practices

• A common vocabulary
• It makes easier to teach, learn, use and modify practices

• Is a necessity to create a library of reusable practices from which selecting 

3. Focus on the essentials when providing guidelines for a method or 
practice

• Developers rarely have the time to read detailed methods and 
practices

• The essential are defined as the initial minimum of what expert 
knows, but enough to start practicing. 5% could be enough and 
provide the idea that is really the essence of the whole.



G. Calavaro  8

The Essence of “Essence”

• Essence is made of 2 parts:

– Kernel

• The kernel of Software Engineering

– The set of elements that would always be found in all types of software 
system endeavours

– Language

• The Essence language is very simple, intuitive and practical

• Utilized in describing the Essence kernel with the elements that 
constitute a common ground

Essence

+ =

Kernel Language



9

• Using Essence Kernel and Language you can 
Essentialize Practices and Methods 

• Essentialize a practices means they are described 
using Essence

– the Essence kernel 

– the Essence language

– It focuses the description of the method/practice on what is 
essential.

• Consequently, the methods we describe are also 
essentialized.

Essentialize Practices and Methods



10

• Essentialized Methods are composition 
of Essentialized practices

• Practices can be compositions of smaller 
practices. 

– Scrum for instance can be seen as a 
composition of three smaller practices: 

• Daily Stand-up, 

• Backlog-Driven Development

• Retrospective.

Essence Method Architecture

The Essence Language

The Essence Kernel

Essentialized Practices

Essentialized Methods

uses

uses

uses



G. Calavaro  11

Methods are composition of Practices

• Composition of practices is an operation merging two or 
more practices to form a method. 

– The operation has been defined mathematically in order to be 
precise. 

– The operation has to be specified by an expert
with the objective to resolve potential overlaps and conflicts 
between the practices concerned, if there are any. 

– Usually most practices can be composed easily by setting them 
side by side because there are no overlaps and conflicts, 
but in some cases these have to be taken care of. 



G. Calavaro  12

Resolving overlaps and conflicts

• While practices are separate, they are not independent 

– They are not like components which have interfaces over which 
communication will happen. 

• Practices can share elements

For example:

– Guidelines for activities that a user (e.g. a developer) is supposed 
to perform 

– Guidelines for work products (e.g. components) that a user is 
expected to produce. 

• If two practices share the same work product: 

– They contribute separate guidelines to this work product

– Composing these two practices will require that you specify how 
the contributions must be combined in a meaningful and 
constructive way.



G. Calavaro  13

How to learn a Method

• Essence, beside text books, wants to provide team 
members with a new engaging and hands-on experience 
to learn the tailored method that each organization will 
define

– A set of icons will help represent the elements

– A set of cards will help describe and discuss the elements

Method

Backlog
Driven

User
Story TDD

Some 
other

practices

=

Essence

• To build a method, a 
team start with the 
kernel and selects a 
number of practices 
and tools to make up 
its way-of-working



14

• The Kernel can be 
“touched” and used 
through the use of 
cards

• The cards provide 
concise reminders and 
cues for team 
members

• By providing practical 
check lists and 
prompts, the kernel 
becomes something 
the team uses on daily 
basis if needed

Cards make Kernel and Practices Tangible



Essence Seminar
For University of Rome “Tor Vergata”

www.semat.org

The Basics of 
Software Engineering
Giuseppe Calavaro, Ph.D.
IBM Big Data Practice Leader
External Professor at University of Rome “Tor Vergata”

http://semat.org/


G. Calavaro  16

Software Engineering Basics

• The commonly used terms in Software Engineering we 
must know before drilling down on building methods are 
organized around three areas

• Customer

– Opportunity

– Stakeholder

• Solution

– Requirements

– Software System

• Endeavour

– Work

– Team

– Way of Working

Opportunity

Requirements

Stakeholder

Software
System

Team

Way of
Working

Work

C
u

st
o

m
er

So
lu

ti
o

n
En

d
e

av
o

r



G. Calavaro  17

Customer

Customers: Users of our system or people that are purchasing 
this system for the users

Software Engineering is about providing value to 
customers

• Opportunity

– An opportunity is a chance to do  something to provide value to 
customers, including fixing an existing problem via this software 
system

• Stakeholders

– Stakeholders are individuals, organizations or groups that have some 
interest or concern either in the system to be developed or in its 
development



G. Calavaro  18

Solution

The solution is the outcome of this endeavor

• Requirements

– Requirements provide the stakeholder view of what they expect 
the software system to provide

• They indicate what the software system must do, but do not 
explicitly express how it must do it

• Among the biggest challenges software teams faces are changing 
requirements

• Software System

– The primary outcome of a software endeavour is of course the 
software system itself.

– 3 important characteristics of software systems

• Functionality – Must serve some function

• Quality – Reliability, Performance, Rich user experience, etc.

• Extensibility – From version to version and platform to platform



G. Calavaro  19

Endeavors

An endeavor is any action that we take to achieve an objective

• Team

– Team must have enough people (and not too much), with right skill 
mix, work collaboratively, and adapting to changing environments

– Good team working is essential

• Work

– The work of bringing the opportunity to reality

– Effort and Time are the most important measures of the work

• Effort and Time are limited

• The idea is to get things done fast but with high quality

• Way of Working

– Team members must agree on their way of working

• The practice and tools that will be used

• Used by all team members

• Improved by the team when needed

– One of the things we hope to achieve with Essence is simplifying 
the process of reaching a common agreement, that is always a 
major challenge



Essence Seminar
For University of Rome “Tor Vergata”

www.semat.org

The Essence Language

Giuseppe Calavaro, Ph.D.
IBM Big Data Practice Leader
External Professor at University of Rome “Tor Vergata”

http://semat.org/


G. Calavaro  21

Essence Prime

• Essence provides a precise and actionable language to 
describe software engineering practices. 

– The constructs in the Essence language are in the form of 
shapes and icons.

– The different shapes and icons each have different meaning.

• Essence categorizes the shapes and icons as:

– Things to Work With

– Things to Do

– Competencies

• Essence provides explicit and actionable guidance. 

– This actionable guidance is delivered through associated 
checklists and guidelines.



G. Calavaro  22

Essence Language Element Types

• The Essence list is longer, but at this time we consider 
these elements as key and the first to learn



23

• The purpose of this 
practice is to produce high 
quality code. 

– In this case, we define code 
quality as being 
understandable by the 
different members of the 
team.

• Two persons (students) 
work in pairs to turn 
requirements into a 
software system by writing 
code together.

• Writing code is part of 
implementing the system.

An Example: Programming Practice

<requires

competency

CodeWrite 
Code

Software 
System

produces >

Requirements

< fulfills

provides input and 

is progressed by >

Development

Testing



G. Calavaro  24

Alphas

Def: Alphas are subjects in a software endeavour whose evolution 
we want to understand, monitor, direct, and control

• Alphas are the most important things you must attend to and progress 
in order to be successful in a software development endeavour

• For our programming practice example:
– The Alphas are: Requirements and Software System

– There will always be requirements, regardless of whether you document them or not, 
or how you document them, e.g. as requirement items, use cases, etc.

– In some cases the requirements for a software system may just exist in the heads of 
people. However, an alpha may be made evidenced by providing one or more 
descriptions; that is, by attaching work products to the alpha.

• An Alpha is not tangible by itself, but it is understood or 
evidenced by the work product(s) that are associated with it 
and thus describe a particular aspect of the alpha



25

The Alpha Card 
provide a short and 
crisp description of 
the Alpha and it’s 
States

Alpha Card

Alpha Name

Very brief 
alpha description

Alpha states
Each alpha state has 
an alpha state card



26

For each State of an 
Alpha, there is a card 
describing the 
checklist criteria to 
achieve
• Checklists are an 

important and practical 
way to monitor and 
guide progress

• Checklist criteria are 
intentionally not 
expressed formally
– So teams can interpret 

each checklist item as 
they deem it appropriate 
to their endeavour.

• At the bottom of the 
card there is a bar 
indicating the sequence 
number and the total 
number of alpha states 
for this alpha

Alpha State Cards



27

The Programming Practice 
in our example has also the 
Software System Alpha

The states are defined on the basis of an 
incremental risk driven approach to building the 
Software System:

• Architecture Selected – key decisions about 
the Software System have been made.
– For instance, the most important system elements and 

their interfaces are agreed upon.

• Demonstrated – key use of the Software 
System has been demonstrated and agreed.

• Useable – the Software System is usable from 
the point of view of its users.

• Ready – the Software System has sufficient 
quality for deployment to production, and the 
production environment is ready.

• Operational – the Software System is 
operating well in the production environment.

• Retired – the Software System is retired and 
replaced by a new version of the Software 
System, or by a separate Software System.

Software System Alpha example



G. Calavaro  28

Work Products

Def: Work Products are tangible things such as documents and 
reports

• Work products may provide evidence to verify the achievement of alpha 
states.
– For example, when a complete and accepted requirements document has been 

developed that evidence can be used to confirm achieving certain checklists within a 
state of the Requirements alpha. 

• The fact that you have a document is not necessarily a sufficient 
condition to prove evidence of state achievement. 
– Historically, documentation has not always provided an accurate measurement of 

progress. 

– It is the checklist for that state that has been achieved satisfactorily the condition to 
satisfy

• Essence does not specify which work products are to be developed
– But it does specify 

• What work products are, 

• How you represent them

• What you can do with them



29

Work Product Card

Work Product Name

Brief
work product
description

Level of detail

Relationship to 
other elements



G. Calavaro  30

Activity

Def: Activities are things which practitioners do
– Activities examples are: holding a meeting, analysing a requirement, writing code, 

testing or peer review

• Practitioners often struggle to determine the appropriate degree of 
detail or formality with an activity, or exactly how to go about 
conducting the activity. 
– This is another motivation for explicit practices as they can provide guidance to 

practitioners in selecting appropriate activities as well as provide guidance in how to 
go about conducting each activity. 

• A practice may include several activities that are specific to the practice 
being described. 
– Activities are specific and not standard – they are not a part of Essence.

• An activity is always bound to a specific practice, it cannot “float 
around” among the practices. 
– If you find an activity that needs to be reused by many practices, then you may want 

to create a separate practice including this activity.



31

Activity Card

Activity name

Very brief 
Activity description

Inputs for activity

Outputs of activity

Competency to 
conduct activity

Activity space 
which this activity 

belongs to



G. Calavaro  32

Competency

Def: Competencies are the abilities needed when applying a 
practice

• Often software teams struggle because they don’t have all the abilities 
needed for the task they have been given.
– In these situations, a coach can help by explaining different ways the practitioner can 

address the problem, such as learning something that is missing in their 
competencies.

– A useful exercise that teams are encouraged to conduct is to do a self-assessment of 
their competencies and compare the results to the competencies they believe they 
need to accomplish their specific endeavour.



33

Competency Card

Competency name

Brief 
Competency 
description

Competency levels



34

• These are the elements 
of ESSENCE LANGUAGE 
and their relationships

• Essentializing a Practice, 
means to describe a 
practice using the 
Essence language.

Essence Language

<
  
in

v
o

lv
e

s

< evidences

p
ro

d
u

c
e
s

/ 
u

p
d

a
te

s
 >

T
a

rg
e

ts
 >

<
 h

a
s

Alpha State

Alpha

Competency

Activity Space Activity

Work Product

Organizes >

Pattern



G. Calavaro  35

Additional Elements in Essence Language

• These elements will be described deeper later on.

• The Essence Language Element list contains two more 
elements



G. Calavaro  36

Essentializing a Practice

• The steps to Essentializing a practice are:

– Identifying the elements – this is primarily identifying a list of 
elements that make up a practice. 

• The output is essentially a diagram like that one seen for the 
Programming Practice

– Drafting the relationships between the elements and the 
outline of each element

• At this point, the cards are created

– Providing further details – Usually, the cards will be 
supplemented with additional guidelines, hints and tips, 
examples, and references to other resources, such as articles 
and books.



G. Calavaro  37

Please Note: Alphas vs Products difference

Essence distinguishes between elements of health and 
progress versus elements of documentation.

• Elements of health and progress: Alphas

– Alphas are the important things we work with when conducting 
software engineering activities.

– Alphas are not work products. 

– Alphas are things we want to track the progress of. 

• Elements of documentation: products. 

– Work products are tangible things such as documents, which can 
have different levels of detail.



Essence Seminar
For University of Rome “Tor Vergata”

www.semat.org

The Essence Kernel

Giuseppe Calavaro, Ph.D.
IBM Big Data Practice Leader
External Professor at University of Rome “Tor Vergata”

http://semat.org/


G. Calavaro  39

The Essence Kernel

• The Essence kernel is the set of Essence elements that 
would always be found in all types of software system 
endeavours. 

– For instance, the element architecture was discussed as a kernel 
element. 

• The opinion was that while for many systems it is critical to identify 
an architecture there are many simpler systems where architecture 
is not an issue. 

• Since it is not common to all projects, architecture is not a concern 
that every endeavor has to face, it didn’t qualify as a kernel 
element.

• In the following slides we will illustrate the elements that 
are part of Essence Kernel



G. Calavaro  40

Areas of Concerns

• The Essence kernel elements are organized around 3 
areas of concerns, that we have already seen:

Customer – This area of concern contains everything to do with 
the actual use and exploitation of the software system to be 
produced.

Solution - This area of concern contains everything related to the 
specification and development of the software system.

Endeavor - This area of concern contains everything related to the 
development team and the way that they approach their work



G. Calavaro  41

The Essence Kernel

The kernel elements are fundamentally of four kinds:

1. The essential things to work with – the alphas

2. The essential things to do – the activity spaces

3. The essential capabilities needed – the competencies

4. The essential arrangements of elements – the patterns.

• Finding the right elements is crucial. 

• They must be universally acceptable, significant, relevant 
and guided by the notion that, 

“You have achieved perfection not when there is nothing left to 
add, but when there is nothing left to take away.”*



G. Calavaro  42

1. The alphas

We have already seen the Kernel Alphas

Opportunity

Requirements

Stakeholder

Software
System

Team

Way of

Working

Work

su
p

p
o

rts

identifies

performs and plans


p

ro
d

u
ces

fulfills

u
ses an

d
 

co
n

su
m

es

fo
cu

ses
sco

p
es an

d
co

n
strain

s

se
t 

u
p

 t
o

 a
d

d
re

ss


C
u

st
o

m
er

So
lu

ti
o

n
En

d
ea

vo
r



G. Calavaro  43

States of the Alphas in the Essence Kernel

• The OMG standard defines the states for each kernel alpha shown

• The details of each state can be found in the Essence standard, and we will 
not go deeper into each of them here 

• You should be able to download them from the web site of the Essence 
book.



G. Calavaro  44

2. The Activities and Activity Spaces
• In every software development endeavour you carry out a 

number of activities. 

– Essence does not define any activities 

• how your team goes about capturing and communicating the 
requirements can be very different from team to team

– Essence defines a number of activity spaces.

• Def. Activity spaces are generic placeholders for 
specific activities

– Since the activity spaces are generic

• They are method-independent

• They could be standardized and are thus part of the Essence standard

• Each activity space can be extended with concrete activities that 
progress one or more alphas

– The activity spaces are packages used to group activities, which are 
related to one another

– The activity spaces represent the essential things that have to be 
done to develop software



G. Calavaro  45

Activity Spaces in Kernel Standard

These are the Activity Space from Essence Standard

45© 2009 Ivar Jacobson International

Explore 
Possibilities

Ensure Stakeholder 
Satisfaction

Shape 
the System

Implement the 
System

Test 
the System

Deploy 
the System

Use the 
System

Operate 
the System

Understand 
Stakeholder Needs

Prepare to do 
the Work

Coordinate 
Activity

Support the 
Team

Stop the 
Work

Track 
Progress

Understand the 
Requirements

C
u

st
o

m
e

r
So

lu
ti

o
n

En
d

e
av

o
r



46

Customer

• Explore Possibilities
Explore the possibilities presented by 
the creation of a new or improved 
software system. This includes the 
analysis of the opportunity and the 
identification of the stakeholders.

• Understand Stakeholder Needs
Engage with the stakeholders to 
understand their needs and ensure 
that the right results are produced. 
This includes identifying and working 
with the stakeholder representatives 
to progress the opportunity.

• Ensure Stakeholder Satisfaction
Share the results of the development 
work with the stakeholders to gain 
their acceptance of the system 
produced and verify that the 
opportunity has been addressed.

• Use the System
Observe the use the system in a live 
environment and how it benefits the 
stakeholders.

Activity Spaces Essence Standard Desc.

Solution

• Understand the Requirements
Establish a shared understanding of 
what the system to be produced 
must do. 

• Shape the system
Shape the system so that it is easy 
to develop, change and maintain, 
and can cope with current and 
expected future demands. This 
includes the architecting and overall 
design of the system to be 
produced. 

• Implement the System
Build a system by implementing, 
testing and integrating one or more 
system elements. This includes bug 
fixing and unit testing. 

• Test the System
Verify that the system produced 
meets the stakeholders’ 
requirements. 

• Deploy the System
Take the tested system and make it 
available for use outside the 
development team

Endeavour

• Prepare to do the Work
Set up the team and its working 
environment. Understand and 
commit to completing the work.

• Coordinate Activity
Co-ordinate and direct the team’s 
work. This includes all ongoing 
planning and re-planning of the 
work, and re-shaping of the team.

• Support the Team
Help the team members to help 
themselves, collaborate and improve 
their way of working.

• Track Progress
Measure and assess the progress 
made by the team.

• Stop the Work
Shut-down the software engineering 
endeavour and handover of the 
team’s responsibilities.



G. Calavaro  47

Activity Space Card

• Activity space 
cards have 
very similar 
contents as 
activity cards

Activity name

Very brief 
Activity description

Inputs for activity

Outputs of activity



G. Calavaro  48

3. The Competencies

Def. Competencies are generic containers for 
specific skills

– Specific skills, for example Java programming, are not part of 
the kernel because this skill is not essential on all software 
engineering endeavours. 

– But competency is always required and it will be up to the 
individual teams to identify the specific skills needed for their 
particular software endeavour. 

• A common problem on software endeavours is not being 
aware of the gap between the competencies needed and 
the competencies available. 

– The kernel approach will raise the visibility of this gap. 



G. Calavaro  49

Competences in Essence Kernel Standard

• Competencies are aligned to the three focus areas

• Essence Kernel Standard competencies are needed for 
any Software Engineering Endeavour, independently then 
methods and techniques adopted



50

Customer

• Stakeholder 
Representation
This competency 
encapsulates the ability to 
gather, communicate, and 
balance the needs of other 
stakeholders, and accurately 
represent their views.

Competences Essence Standard Desc.

Solution

• Analysis
This competency encapsulates 
the ability to understand 
opportunities and their related 
stakeholder needs, and to 
transform them into an agreed 
upon and consistent set of 
requirements. 

• Development
This competency encapsulates 
the ability to design, program 
and code effective and efficient 
software systems following the 
standards and norms agreed 
upon by the team. 

• Testing
This competency encapsulates 
the ability to test a system, 
verify that it is usable and that 
it meets the requirements.

Endeavour

• Leadership
This competency enables a 
person to inspire and motivate 
a group of people to achieve a 
successful conclusion to their 
work and to meet their 
objectives. 

• Management
This competency encapsulates 
the ability to coordinate, plan 
and track the work done by a 
team



51

• Each of the 
competencies has a 
competency level

• The competency level is 
the same across all of 
the kernel competencies.

Competency levels of achievement:

1. Assists – Demonstrates a basic 
understanding of the concepts and 
can follow instructions.

2. Applies – Able to apply the concepts 
in simple contexts by routinely 
applying the experience gained so far.

3. Masters – Able to apply the concepts 
in most contexts and has the 
experience to work without 
supervision.

4. Adapts – Able to apply judgment on 
when and how to apply the concepts 
to more complex contexts. Can 
enable others to apply the concepts.

5. Innovates – A recognized expert, 
able to extend the concepts to new 
contexts and inspire others.

Competency levels



G. Calavaro  52

4. Patterns

Def. Patterns are generic solutions to typical problems

– Patterns is the way Essence allows arrangements of elements to 
solve a specific problem

• Patterns are optional elements (not required element of a 
practice definition) that may be associated with any other 
language element.

• Patterns examples exist in our daily life as well as in 
Software Engineering:

– In a classroom, we often see the teacher in front, with rows of 
desks and chairs for students. This is a common teaching pattern.

– In SW Eng we use patterns very often. Some examples are:

• CheckPoints, Student Pairs, etc.

• Roles are special type of Patterns



G. Calavaro  53

A Pattern Example: Checkpoint

• A checkpoint is a set of criteria to be achieved at a 
specific point in time where an important decision is to 
be taken. 

– A checkpoint is simply expressed by a set of alpha states that 
must have been achieved in order to pass the checkpoint. 

– This pattern can be reused 
for other similar 
endeavours trying to get to 
the same checkpoint.



G. Calavaro  54

Using Checkpoint Pattern Example

• Let’s use Checkpoints to decide when to start and when to 
finish development of a software project

Pre-
Development Development

Post-
Development time

Requirements

Software System

Ready for Development
Checkpoint

Development Complete
Checkpoint

Architecture
Selected

Addressed

Ready

Bounded

• In this example, there are two checkpoints. 

– What are the checkpoints?

• The criteria for these two checkpoints are expressed using 
alpha states.

– What are the Alpha States for each Check Point?



G. Calavaro  55

Roles: A Special kind of Pattern

• Roles represent the set of competencies needed to do a 
job effectively

– Roles are a special kind of patter that apply to people

– Example of Roles are Coder, Analyst, Tester

– Responsibilities to achieve a 
task are assigned to the task 
owner, that could be playing 
a role, but the 
responsibilities are not part 
of the role definition 

Pattern name

Brief 
pattern 
description



56

Summary of Essence Elements and Cards

Alpha Work Product Activity Competency

Pattern Activity Area



Essence Seminar
For University of Rome “Tor Vergata”

www.semat.org

Conclusions: 
Reflections on Essence Goals and 
Theory of Software Engineering

Giuseppe Calavaro, Ph.D.
IBM Big Data Practice Leader
External Professor at University of Rome “Tor Vergata”

http://semat.org/


G. Calavaro  58

What is Essence?

• Essence provides a common ground for Software 
Engineering

– It is very important to have such common ground

– It is more than a conceptual mode

– It allows to represent any software engineering method

• Essence Kernel is

– A thinking framework for teams to reason about the 
progress they are making and the health of their endeavors. 

– A framework for teams to assemble and continuously improve 
their way of working. 

– The common ground for improved communication, 
standardized measurement, and the sharing of best practice. 

– A foundation for accessible, inter-operable method and 
practice definitions. 

– And most importantly, a way to help teams understand 
where they are, and what they should do next.



G. Calavaro  59

What makes Essence more than a conceptual framework?

Essence Guiding principles

Practical
• Tangible through the cards

– Cards provide concise reminders

• Practical through Checklists and Prompts

– Utilizable on a daily basis helping making decisions

• Alphas helps assess & 
drive progress and 
health of project

• Each state has a 
checklist

– Criteria needed to 
reach the state

• Alphas are method 
and practice 
independent

• Practices are distinct, 
separate, modular 
units

• Kernel allow create or  
tailor and compose  
practices to new 
methods

• Additional Alphas can 
be added



60

• Essence Kernel doesn’t 
compete with existing 
methods

• Essence kernel can be used 
with all the currently popular 
management and technical 
practices:
– Scrum

– Kanban

– risk-driven

– Iterative

– Waterfall

– use-case driven development

– acceptance test driven development

– continuous integration

– test driven development

– Etc.

• It will help all sizes of 
teams

– from one-man bands to 
1,000 strong software 
engineering programs.

• The kernel supports the 
values of the Agile 
Manifesto

– It values the 'use of 
methods' over 'the 
description of method 
definitions'

Essence and Agile (or other approaches)



G. Calavaro  61

What is a Theory?

• Most theories share three characteristics

– they attempt to generalize local observations and data into more 
abstract and universal knowledge

– they generally have an interest in causality (cause and effect)

– they often aim to explain or predict a phenomenon.

• Gregor[REF] proposes 4 goals for a theory:

1. Describe the studied phenomenon

• Function Point and SWEBOK could serve as an example. 

2. Explain the how, why, and when of the topic

• theory of cognition is aimed at explaining the human mind’s 
limitations

3. Beside explaining what has already happened also predict what 
will happen next

• Cocomo attempts to predict the cost of software projects 

4. Prescribe how to act based on predictions 

• Alan Davis’s 201 principles exemplify this goal[REF]



G. Calavaro  62

Where is the Theory for SW Engineering?

• Most academic disciplines are very concerned with their 
theories.

• Why the software engineering community seems so 
uninterested in discussing its theories?

• Software Engineering Doesn’t Need Theory?
– Software engineering isn’t doing fine. 

– All engineering fields need theory, 

– The maturity of scientific disciplines can be measured by the unity of their theories

• Software Engineering Already Has Its Theory?
– A discipline’s significant theories should be able to provide answers to that discipline’s 

significant questions…

• Software Engineering Can’t Have a Theory?
– Software engineering is a practical engineering discipline without scientific ambitions where 

rules of thumb and guidelines assume the role of theory

– We don’t believe that there’s any rational reason for the lack of theoretical focus in software 
engineering

– Without the predictive and prescriptive support of theory, software engineering would be 
relegated to the horribly costly design process of trial and error



G. Calavaro  63

Essence is founding the theory of SW Eng

• Theory is generally used to 

1. describe a phenomenon of interest, 

2. to explain and predict that phenomenon

• Description precedes prediction and to describe 
something, a language is needed.

• There is currently no widely accepted predictive general 
theory of software engineering. 

– However, the Essence takes the first step by proposing a 
coherent, general, descriptive theory of software engineering, 
i.e. a language of software engineering.

– But a complete consideration of the causality between concepts 
and thus prediction is beyond the current version of the Essence.



G. Calavaro  64

Conclusions

• Essence kernel is a spring board towards more mature 
software engineering practices and a more mature 
software engineering discipline.

• In the remaining parts of this course, we will 
demonstrate how Essence helps you and your teams 
collaborate more effectively.



G. Calavaro  65

Authors and affiliations
• This is the list of the main authors of the book “Essence of Software Engineering”. The 

ideas and positions are solely opinion of the authors and do not reflect their company 
positions.

• Ivar Jacobson

– Ivar Jacobson International Founder and Chairman

• Harold “Bud” Lawson

– Coordinating Editor Systems Series College Publications - Kings College, UK

• Pan-Wei Ng

– Agile Lean Enterprise, ThoughtWorks & Nanyang Technological University, Singapore

• Paul McMahon

– Principal Consultant at PEM Systems, USA

• Michael Goedicke

– Vice Dean at University of Duisburg-Essen, 

• Ian Spence

– Ivar Jacobson International Chief Scientist & SAFe Fellow, UK


