
Measuring 
Software Quality

1/19



Impact on Quality Characteristics

2



Importance of Quality for 

If you work for an organization that 

produces software, the quality of the 

software you produce could determine a few 
important things:

 The revenue of the company you work for

 The priority of the project or product you are 
working on within the organization

 The likelihood you’ll be promoted to a senior role, 
demoted or even fired

 Your salary.
3



Quality Aspect 1: Reliability @
Reliability refers to the level of risk inherent in a 
software product, and the likelihood it will fail. It also 
addresses “stability,” as termed by ISO: how likely are 
there to be regressions in the software when changes 
are made.

A related term coined in recent years is “resilience.” 
This views the problem from a different direction, 
asking what is the software’s ability to deal with failure, 
which will inevitably happen. 

For example, modern applications based on 
containerized micro-services can be easily and 
automatically redeployed in case of failure, making them 
highly resilient. 

4



Why measure reliability?

To reduce and prevent severe 
malfunctions or outages, and errors
that can affect users and decrease user 
satisfaction. 

Software is better if it fails less often, 
and easily recovers from failure when it 
happens. 

5



How can you measure reliability?

 Production incidents – A good measure of a 
system’s reliability is the number of high priority 
bugs identified in production.

Reliability testing – Common types of reliability 
testing are load testing, which checks how the 
software functions under high loads, and 
regression testing, which checks how many new 
defects are introduced when software undergoes 
changes. 

The aggregate results of these tests over time can 
be a measure of software resilience.

6



How can you measure reliability?

Reliability evaluation – An in-depth test 
conducted by experts who construct an operational 
environment simulating the real environment in 
which the software will be run. In this simulated 
environment, they test how the software works in a 
steady state, and with certain expected growth 
(e.g. more users or higher throughput).

Average failure rate – Measures the average 
number of failures per period per deployed unit or 
user of the software.

7



Quality Aspect 2: 
Performance @ 

In the CISQ software quality model, this aspect is 
known as “Efficiency.” Typically, the most 
important elements that contribute to an 
application’s performance are how its source 
code is written, its software architecture and the 
components within that architecture: databases, 
web servers, etc. Scalability is also key to 
performance: systems which are able to scale up 
and down can adapt to different levels of required 
performance. 

8



Quality Aspect 2: 
Performance

Performance is especially important in fields like 
algorithmic or transactional processing, where 
massive amounts of data need to be processed 
very quickly, and even small latency can cause 
significant problems. 

But today performance is becoming universally 
important as users of web and mobile 
applications demand high performance and 
become quickly frustrated if a system does not 
respond quickly.

9



How can you measure 
performance?
 Load testing – Conducted to understand the 

behavior of the system under a certain load, for 
example, with 1,000 concurrent users.

 Stress testing – Understanding the upper limit 
of capacity of the system.

 Soak testing – Checking if the system can 
handle a certain load for a prolonged period of 
time, and when performance starts to degrade.

Application performance monitoring (APM) –
Providing detailed metrics of performance from 
the user’s perspective. 

10



Quality Aspect 3: 
Security @ 

Security, in the context of software quality, 
reflects how likely it is that attackers might breach 
the software, interrupt its activity or gain access to 
sensitive information, due to poor coding 
practices and architecture. A central concept in 
security is “vulnerabilities” – known issues that 
can result in a security issue or breach. 

The number and severity of vulnerabilities 
discovered in a system is an important indication 
of its level of security.

11



How can you measure security?

Number of vulnerabilities – It is possible to 
scan software applications to identify known 
vulnerabilities. The number of vulnerabilities 
found is a good (negative) measure of security..

 Time to resolution – How long does it take 
from the time a vulnerability was introduced in 
the software until a fix or patch was released?

12



How can you measure security?

Deployment of security updates – For 
software deployed on users equipment, how 
many users have actually installed a patch or 
security update?

Actual security incidents, severity and total 
time of attacks – How many times was a 
system actually breached, how badly did the 
breach affect users, and for how long?

13



Quality Aspect 4: 
Maintainability @ 

Software maintainability is the ease with which 
software can be adapted to other purposes, how 
portable it is between environments, and whether 
it is transferable from one development team or 
from one product to another. 

Maintainability is closely related to code quality. If 
code is of high quality, the software is likely to be 
more easily maintainable.

14



How can you measure 
maintainability?
 Lines of code – A very simple metric that has 

an impact on the maintainability of a system. 
Software with more lines of code tends to be 
more difficult to maintain and more prone to 
code quality issues. 

 Software complexity metrics – There are 
several ways to measure how complex software 
is, such as cyclomatic complexity and N-node 
complexity. Code that is more complex is likely 
to be less maintainable. 

15



How can you measure 
maintainability?
 Static code analysis – Automatic examination 

of code to identify problems and ensure the 
code adheres to industry standards. Static 
analysis is done directly on the code without 
actually executing the software. 

16



Quality Aspect 5: 
Rate of Delivery @

In agile development environments, new 
iterations of software are delivered to users 
quickly. 

Many organizations today ship new versions of 
their software every week, everyday, or even 
several times a day. This is known as 
Continuous Delivery, or in its extreme form, 
Continuous Deployment, in which every change 
to the software is immediately shipped to 
production.

17



Quality Aspect 5: 
Rate of Delivery @

Rate of software delivery is related to quality, 
because a new version of a software system will 
typically contain improvements that can impact 
the user. 

A higher frequency of releases that are delivered 
to the user should, in theory, mean that the user 
gets better software faster.

18



How can you measure rate of 
delivery?
Number of software releases – This is the 

basic measurement of how frequently new 
software is delivered to users. 

Agile stories which are “done” in a certain 
time period – Counting the number of “stories,” 
or user requirements, which are actually 
shipped to the user, provides a more granular 
measure of the rate of delivery.

User consumption of releases – For example, 
measuring the number of users who download 
or install a new patch or software update.

19


