
© Manuel Mastrofini

Enterprise Application
Development

Spring and Hibernate



© Manuel Mastrofini

Agenda
• Spring Inversion of Control and

Dependency Injection
– Spring Context
– Spring Beans
– Spring Configuration

• Spring MVC
• Spring Data

– Hibernate
– JPA
– Spring Repository

• More on Spring

<number>



© Manuel Mastrofini

Agenda
• Spring Inversion of Control and

Dependency Injection
– Spring Context
– Spring Beans
– Spring Configuration

• Spring MVC
• Spring Data

– Hibernate
– JPA
– Spring Repository

• More on Spring

<number>



What’s Spring?
• “Spring Framework is a Java platform that

provides comprehensive infrastructure
support for developing Java applications”

• “Spring handles the infrastructure so you
can focus on your application”

• “Spring enables you to build applications
from ‘plain old Java objects’ (POJOs) and
to apply enterprise services non-invasively
to POJOs”

<number>

Spring main reference: http://docs.spring.io/spring/docs/3.0.x/reference/overview.html

http://docs.spring.io/spring/docs/3.0.x/reference/overview.html


Inversion of Control (IoC)

<number>

Example: program to get and process information from a user

Command line version Graphical version

Design technique that delegates invoking a behavior to an assembler at runtime



Inversion of Control (IoC)

<number>

Example: program to get and process information from a user

Command line version Graphical version

Control goes from my command line program module to the event manager
module, which is instructed via "bind“

This is IoC, aka “Hollywood principle: don’t call us, we’ll call you”

http://martinfowler.com/bliki/InversionOfControl.html

http://martinfowler.com/bliki/InversionOfControl.html


Dependency Injection (DI)
• Design pattern to create an object O1 another

object O2 relies on, without knowing, at compile
time, which class O1 is instance of

• 3 roles
– Dependent consumer
– Interface contract
– Injector: create instances of classes implementing the

interface contract and inject the dependency on the
dependent consumer
o The injector selects the class to instantiate

Spring heavily leverages IoC and DI

<number>



Spring IoC Container (IoCC)

<number>



Spring IoC Container (IoCC)

<number>

Beans



Spring Beans
• IoCC represents bean definitions as

BeanDefinition instances
– Package-qualified class name
– Unique identifiers
– Behavioral configurations

oScope
oLifecycle callbacks

– References to other beans (also called
dependencies)

– Other configurations (e.g. bean-specific
properties)

<number>



Configuration Metadata for IoCC

• 3 techniques
– XML-Based configuration
– Annotation-based configuration

oAnnotating classes, attributes, methods
– Java-based configuration

oMeta-data hard-coded in a Java Class

<number>



Spring Bean Scope
• Singleton (default)

– Unique instance shared by
• Prototype

– Any number of instances and the container does not keep any
reference after handing the instance to the client

• Request
– The bean is alive for an HTTP request lifecycle (only web

applications)
• Session

– The bean is alive for an HTTP session (only web applications)
• GlobalSession (only web applications with portlets)

– The bean is alive for an HTTP global session
• Custom scopes can be created

<number>

Use the scope=“value” attribute in the bean definition tag



Bean Lifecycle
1 Instantiation
2 Property initialization
3 Bean name set, if any non-default name
4 Initializer is called, if any
5 Post-initialization processing
6 Pre-disposal processing
7 Disposal

<number>



Spring Bean Autowiring
• Automatic inspection of Spring-managed

beans
– When a dependency of a bean on another

bean is detected, it is resolved by the IoCC
• Disabled by default

– Can be enabled only for some beans
– Can be enabled for all beans

• Avoids explicitly specifying dependencies
among beans via XML (e.g. via property
tag)

<number>



Annotation-Based Configuration
• @Component

– Identifies a generic Spring-managed bean
• @Service, @Controller and @Repository

are specialization of @Component for
future use
– @Repository identifies a DAO
– @Service annotates beans of the service

layer (i.e. controllers in MVC)
– @Controller annotates beans of the

presentation layer (i.e. the layer between web
view and service layer, e.g. the one managing
navigation among pages)

<number>



Annotation-Based Configuration
• @Autowired

– Spring-specific
oSemantics by-type

• @Inject
– JSR-330

• @PostConstruct,
@PreDestroy

<number>



Java-Based Configuration

<number>



Spring Framework Overview

<number>



Spring Framework Overview

<number>



Spring Framework Overview
• Core Container

– Beans
oBean definitions and management

– Core
o Inversion of Control Container and Dependency

Injection features
BeanFactory is the main interface

– Context
oJava EE features for framework-managed objects

ApplicationContext and BeanFactory are the main
interfaces

– Expression Language
oQuerying and manipulating framework-managed

objects at runtime
<number>



Spring Framework Overview

<number>



AOP
• Aspects, i.e. concepts that apply across multiple type of

classes or objects
– @Aspect annotation or XML configuration in Spring

• Join point: a point during the execution of a program (in
Spring, a method) that is suitable for aspect weaving

• Advice: action taken by an aspect at a particular join point
– @Before, @After (on smooth termination, on exception, or in all

cases), @Around (both before and after)
– Can receive parameters, e.g. the list of arguments received by the

joint point, the implicit object
• Pointcut: a predicate that matches join points

– Associated with Advice to identify when weaving an aspect
• Weaving: process of introducing an advice in a matched

join points
• In synthesis, pointcuts define which join points get advised,

i.e. where aspects get woven.
<number>



AspectJ Example

<number>



Spring Framework Overview

<number>



Spring Instrumentation Module
• Support to class loading
• Class weaving
• Utility class to deploy on specific

application servers
• Low-level API, rarely used by application

software developers

<number>



Spring Framework Overview

<number>



Spring Test Module
• Support to run tests within a Spring Container

– Leverage Spring features during testing, e.g.
annotations

– Access to ApplicationContext
• Additional annotations for tests, e.g.

– @Timed(t)
– @Repeat(n)

• Configurability of tests for different architectural
layers, e.g.
– Disable rollback when testing a transaction
– Manage web session when testing a controller
– Build an HTTP request for a REST API

• Full integration with JUnit, support for TestNG

<number>



© Manuel Mastrofini
ISSSR 2013/2014

Agenda
• Spring Inversion of Control and Dependency

Injection
– Spring Context
– Spring Beans
– Spring Configuration

• Spring MVC
• Spring Data

– Hibernate
– JPA
– Spring Repository

• Additional Spring Components and Projects

<number>



Spring Framework Overview
• Web

– Web
oFeatures for multipart file

management, web
services…

– Servlet
oSpring’s MVC

implementation
– Portlet
– Struts

<number>



© Manuel Mastrofini
ISSSR 2013/2014

Spring MVC

<number>



© Manuel Mastrofini
ISSSR 2013/2014

Spring MVC
• DispatcherServlet

– Actual servlet that extends HttpServlet
– URL mapping of requests to be managed by

such servlet (via web.xml)
o@RequestMapping

– Can access beans from the root application
context or from the context associated to it (if
any dispatcher-scoped context exists)

– Requires a WebApplicationContext as
ApplicationContext

<number>



© Manuel Mastrofini
ISSSR 2013/2014

• Controllers
• HandlerMapping: handle the execution of pre-

processors, post-processors and controllers
• ViewResolver: resolves view names to views
• LocaleResolver: resolves the locale a client is

using
• ThemeResolver: resolves the view theme to use
• MultipartResolver: processes file uploads from

HTML forms
• HandlerExceptionResolver: map exceptions to

views or handle exceptions

Spring MVC

<number>



© Manuel Mastrofini
ISSSR 2013/2014

Spring MVC

<number>

All handling methods on this controller are relative to t
he /appointments (not required)

Only accepts GET requests, meaning that an
HTTP GET for/appointments invokes this method

GET requests for appointments/new are handled by this method

@PathVariable binds a parameter to the value of a URI
template variable, i.e. {day}

@Valid requires the parameter to pass the validation
via default or custom validator



© Manuel Mastrofini

JSON
• Javascript Object Notation
• Open standard to exchange data between

applications
• Used to exchange data between server

and client of a web application
– Alternative to XML

• Data types: number, string, boolean, array
and complex object
– null as special value

<number>



© Manuel Mastrofini

{
"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 25,
"height_cm": 167.6,
"address": {

"streetAddress": "21 2nd
Street",

"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

},

JSON Example

"phoneNumbers": [
{

"type": "home",
"number": "212 555-1234"

},
{

"type": "office",
"number": "646 555-4567"

}
],

"children": [],
"spouse": null

}

<number>



© Manuel Mastrofini

Spring REST
• REST

– REpresentational
– State
– Transfer

• Main REST constraints
– Client server (on the web)
– Stateless (no state stored between requests)
– Uniform interface for communication

• @RestController annotations is the same
as @Controller + @ResponseBody for all
methods

<number>



© Manuel Mastrofini

REST Controller Example
• Web Controller
• Business Logic Controller
• Entity
• Client resources

– HTML
– JSP
– JSON

<number>



© Manuel Mastrofini
ISSSR 2013/2014

Agenda
• Spring Inversion of Control and Dependency

Injection
– Spring Context
– Spring Beans
– Spring Configuration

• Spring MVC
• Spring Data

– Hibernate
– JPA
– Spring Repository

• Additional Spring Components and Projects

<number>



Spring Framework Overview
• Data Access/Integration

– JDBC
o Abstraction layer from vendor-

specific coding (e.g. exceptions)
– ORM

o Integration with popular Object-
Relational mapping APIs, e.g.
Hibernate

– OXM
o Integration with popular Object-

XML mapping APIs, e.g. JAXB
– JMS

o Features for message exchange
– Transactions

o Feature for declarative and
programmatic transactions
management

<number>



© Manuel Mastrofini

What is Hibernate?
• Framework for Java
• For ORM: Object-Relational Mapping

– Mapping of Classes to Tables
– Generates SQL for the schema creation
– SQL generation from Java instructions
– No need of conversion from query results to

objects

<number>



© Manuel Mastrofini

Hibernate Architecture

<number>



© Manuel Mastrofini

Hibernate Object States
• Transient

– Instantiated using the new operator, and not associated with a Session
– No persistent representation in the database

• Persistent
– Has a representation in the database and an identifier value

o Hibernate detects changes made to an object and synchronizes the state
• Detached

– Has been persistent and its Session has been closed
– Java reference still valid and might be modified
– Can be reattached to a new Session making it persistent again

<number>



© Manuel Mastrofini

Main Hibernate Components

<number>



© Manuel Mastrofini

Java Persistence API (JPA)
• Standard Java interface to setup and

manage persistence
– Provides a set of interfaces and annotations
– Different JPA implementations can be

configured
oHibernate version 4.3 (Dec 2013) implements

latest JPA (2.1, May 2013)
• Decouples the Java application business

logic from the ORM-specific components
– Possible as long as no vendor-specific feature

is used by the application

<number>



© Manuel Mastrofini

JPA

JPA Architecture

<number>

ORM Framework

Database

EntityManagerFactory EntityManager

Application
Transi-

ent
Objects Persistent

Objects



© Manuel Mastrofini

Basic Examples
• Check the example code for the four

alternatives
– Configuration
– Store (insert)
– Update
– Delete
– Find (select)

<number>



© Manuel Mastrofini

Basic Examples: Config Comparison

Hibernate
• Configuration file

– hibernate.hbm.xml
• List all mapped classes,

either annotated or
configured via hbm files

• Entity mapping
– Annotations
– <entity_name>.hbm.xml

• One per entity
• Required for each entity

with no annotations

JPA
• Configuration file

– persistence.xml
• Reference the entity

mapping file, not
annotated classes

• Entity mapping
– Annotations
– orm.xml

• One section per entity
• Required for each entity

with no annotations

<number>

≈



© Manuel Mastrofini

Basic Examples: Init Comparison
Hibernate
public class DBResourcesManager {

private static Configuration configuration;
private static ServiceRegistry serviceRegistry;
private static SessionFactory sessionFactory;

public static void initHibernate() {
// load hibernate configuration
configuration = new Configuration();
configuration.configure();

// use JNDI to bind Hibernate configuration and
datasource
serviceRegistry = new
StandardServiceRegistryBuilder().applySettings(
configuration.getProperties()).build();

/* Retrieve the one session factory that will manage
sessions, connections and transaction*/
sessionFactory =
configuration.buildSessionFactory(serviceRegistry);

}

JPA
public class DBResourcesManager {

private static EntityManager entityManager;
private static EntityManagerFactory entityManagerFactory;

public static void initPeristence() {
entityManagerFactory =
Persistence.createEntityManagerFactory("pu");
entityManager =
entityManagerFactory.createEntityManager();

}

<number>

≠



© Manuel Mastrofini

Basic Examples: Store Comparison
Hibernate
public class EventDaoHibernate {

public static void store(Event e) {
Session s =
DBResourcesManager.getSession();

s.beginTransaction();
s.save(e);
s.getTransaction().commit();

s.close();
}

JPA
public class EventDaoJPA {

public static void store(Event e) {
EntityManager em =
DBResourcesManager.getEntityManager();

em.getTransaction().begin();
em.persist(e);
em.getTransaction().commit();

}

<number>

≈



© Manuel Mastrofini

Basic Examples: Update Comparison
Hibernate
public class EventDaoHibernate {

public static void updateEvent(Event toUpdate) {
Session s = DBResourcesManager.getSession();
s.beginTransaction();
s.update(toUpdate);
s.getTransaction().commit();

}
}

JPA
public class EventDaoJPA {

public static void updateEventB(Event toUpdate) {
EntityManager em = DBResourcesManager.getEntityManager();
em.getTransaction().begin();
Event loaded = em.find(Event.class, toUpdate.getId());
loaded.updateEvent(toUpdate); // manual update of fields required
em.getTransaction().commit();

}

public static void updateEventA(Event toUpdate) {
EntityManager em = DBResourcesManager.getEntityManager();
em.getTransaction().begin();

String sql = "UPDATE Event SET eventDate = :d, title = :t WHERE id
= :i";
Query query = em.createQuery(sql);
query.setParameter("d", toUpdate.getEventDate());
query.setParameter("t", toUpdate.getTitle());
query.setParameter("i", toUpdate.getId());
query.executeUpdate();

em.getTransaction().commit();
}
}

<number>

≠



© Manuel Mastrofini

Basic Examples: Delete Comparison
Hibernate
public class EventDaoHibernate {

public static void deleteEvent(Event toDelete) {
Session s = DBResourcesManager.getSession();
s.beginTransaction();
s.delete(toDelete);
s.getTransaction().commit();

}
}

JPA
public class EventDaoJPA {

public static void deleteEvent(Event toDelete) {
EntityManager em = DBResourcesManager.getEntityManager();
em.getTransaction().begin();
Event loaded = em.find(Event.class, toDelete.getId());
em.remove(loaded)
em.getTransaction().commit();

}
}

<number>

≠



© Manuel Mastrofini

Basic Examples: Find Comparison
Hibernate
public class EventDaoHibernate {

public static List<Event> findAllEventsA() {
Session s = DBResourcesManager.getSession();

@SuppressWarnings("unchecked")
List<Event> events = s.createQuery("from
Event").list();

return events;
}

public static List<Event> findAllEventsB() {
Session s = DBResourcesManager.getSession();

@SuppressWarnings("unchecked")
List<Event> events =
s.createCriteria(Event.class).list();

return events;
}
}

JPA
public class EventDaoJPA {

public static List<Event> findAllEventsA() {
EntityManager em =
DBResourcesManager.getEntityManager();
List<Event> events = em.createQuery("from Event",
Event.class).getResultList();

return events;
}

public static List<Event> findAllEventsB() {
EntityManager em =
DBResourcesManager.getEntityManager();
CriteriaQuery<Event> query =
em.getCriteriaBuilder().createQuery(
Event.class);
List<Event> events = em.createQuery(query).getResultList();

return events;
}
}

<number>

≈

≈



© Manuel Mastrofini

Annotations (1)
• @Entity

– Marks a class to be persisted
– All non-static non-transient fields are persisted

o If a non-static non-transient fields has not to be persisted,
you can annotate it with @Transient

• @Table
– Optionally adds information on the table

corresponding the annotated class
– Properties

o name: defaults to the entity name
o indexes: defines an array of indexes via @Index(columnList)
o uniqueConstraints: defines an array of unique constraints via

@UniqueConstraint(columnList)

<number>



© Manuel Mastrofini

Annotations (2)
• @Id

– Marks the id field
– Can be: a primitive type, a wrapper type,

String, Date, BigDecimal, BigInteger
– JPA supports a single field as ID, Hibernate

more fields can be the ID
• @GeneratedValue

– Adds information on the ID generation
– Properties

ostrategy: way of generating IDs, including:
AUTO: delegates the decision to the persistence provider
IDENTITY: supported by many DBMS, including MySQL

<number>



© Manuel Mastrofini

Annotations (3)
• @Column

– Optionally adds information on the column
corresponding the annotated field

– Properties
oname: defaults to the field name
onullable (can be null or not)
ounique (is a key or not)
o length

<number>



© Manuel Mastrofini

Relationships Mapping Types
• @OneToOne
• @ManyToOne/@OneToMany
• @ManyToMany
• Each can be unidirectional or bidirectional

<number>



© Manuel Mastrofini

One-to-One Mapping
• Mapped with a foreign key (join column)
• Unidirectional

– Field annotated @OneToOne on the owning side
• Bidirectional

– Field annotated @OneToOne on the owning side
– mappedBy specified in the @OneToOne in non-

owning side

<number>



© Manuel Mastrofini

One-to-Many/Many-to-One Mapping

• Used to map collections
• One-to-Many mapped with a join table
• Many-to-One mapped with a foreign key (join

column)
• Unidirectional

– Add @OneToMany/@ManyToOne on the field
• Bidirectional

– With “one” owning the relation
o Add @OneToMany in the owning side
o mappedBy specified in the @OneToMany in non-owning side

– With “many” owning the relations
o Add @ManyToOne in the owning side
o Add @OneToMany in the non-owning side

<number>



© Manuel Mastrofini

Many-to-Many Mapping
• Used to map collections
• Mapped with a join table
• Unidirectional

– Add @ManyToMany
• Bidirectional

– Add @ManyToMany
– mappedBy specified in the non-owning side

<number>



© Manuel Mastrofini

Relationships Mappings Attributes
• optional: whether the reference can be null
• fetchType: fetching strategy set via @FetchType

– EAGER: related entity is immediately fetched
– LAZY: related entity is automatically fetched as soon as first

accessed in the application
o Not usable when classes are final

• cascade: sets triggers on operations according to its value
– PERSIST (ON INSERT)
– REFRESH (ON UPDATE)
– REMOVE (ON DELETE)
– ALL

• orphanRemoval: whether the referenced entity removal at
application-level (i.e. setting the field to null) should cause a
removal in the database of the formerly related entity
– Cascade.DELETE produces an ON DELETE trigger, while

orphanRemoval does not require the removal of the parent entity in
order to remove its child

<number>



© Manuel Mastrofini

Inheritance Mapping
• @Inheritance

– Three strategies to map inheritance
o SINGLE_TABLE: single table for all entities with the addition

of a discriminating column
o JOINED: a subclass persists only its own properties and

keeps a reference to its parent
o TABLE_PER_CLASS: each concrete class has its own table

containing all attributes defined by parent classes and its own
attributes

• @MappedSuperclass
– Fields of this class are mapped (copied) into its

subclasses
– A table for this class is not created, as its instances

are not persistent objects

<number>



© Manuel Mastrofini

Type Mappings
• @Enumerated

– Either STRING or ORDINAL
• @Lob

– Mapped to MySQL TEXT or BLOB, according
to the field type

• @Temporal
– Either DATE, TIME or TIMESTAMP

<number>



© Manuel Mastrofini

Component Mapping
• @Embedded

– Marks a field whose fields will become part of the
owning entity table (i.e. no foreign key to the
embedded entity)

• @Embeddable
– Marks an entity that can be embedded into another

entity
• @EmbeddedId

– Used to mark an ID that is not a supported ID type,
but another complex type

– The complex type is a class that implements
Serializable and that is marked with @Embeddable

<number>



© Manuel Mastrofini

Type Mapping: Collections
• If using a List, optionally add @OrderBy to store it

according to some order
– Columns to order by are specified as attribute

• If using a Map, add @MapKeyColumn,
@MapKeyEnumerated, @MapKeyTemporal or
@MapKeyJoinColumn to indicate the name of the key
column
– The correct annotation depends on the type of the

map key (Basic, Enumeration, Temporal or Entity)
• If the collection contains basic type or embeddable type

objects, us @ElementCollection

<number>



© Manuel Mastrofini

Spring Data Annotations
• @Repository

– Mark a class/interface as DAO
– Can be a class

o Implement JPARepository and define custom
methods

Leverage the EntityManager
Leverage ORM specific features

– Can be an interface
oDefine operations according to some “convention”
oObtain their implementations automatically

Generated and provided by Spring
E.g. findByUsernameAndPassword(String username,
String password)
E.g. findByNameLike(String nameLike)

<number>



More on Spring: Spring Boot
• “Spring Boot makes it easy to create stand-alone, production-grade Spring based

Applications that you can "just run".”
• Easy creation of a “Hello World web example”

1. Create a Maven project (or Gradle)
2. Add the following dependencies

<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.3.3.RELEASE</version>

</parent>
<dependencies>

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>

</dependency>
</dependencies>

3. Create a Controller class to manager HTTP requests

... or clone this repository: https://github.com/spring-guides/gs-spring-boot.git
or use the Spring initiliaizer: http://start.spring.io/

<number>



More on Spring

• Spring Security
• Spring Intgration
• Book reference: Spring in Action, 3rd

Edition, by C. Walls, Manning

<number>


