

The main objective of experimentation is to evaluate quantitatively a hypothesis or a relationship. Testing is usually made by using statistical methods.

Introduction

During the experiment process, the researchers usually pass into two main levels, the theoretical level and the observational level.

Theoretical Level

Cause Construct: it is to define the entities that could cause the change that we aim to investigate; we start thinking and expecting causes of the change and reasons behind them.

Effect construct: is to define entities that are affected by changes in the cause.

Cause-effect construct: includes the ability to define a reasonable relationship between the cause construct and the effect construct, including definition of what are the appropriate conditions that we should provide in order to realize such a change.

Introduction

During the experiment process the researchers usually pass into two main levels, the theoretical level and the observational level.

Observational Level

Treatment: is any of the (fix | random) values that the experimenter uses as an instance of the Cause construct. Here we use fix values that the experimenter selects.

Outcome: any of the entities that are affected by changes in the cause. In the experimenter view, an outcome is the instance with parameter Treatment of the effect construct.

Treatment-Outcome Construct: is to verify that changes in the outcomes result just and significantly from changes in the treatments.

Some kinds of variables are involved with an experiment process.

Dependent and Response Variables

A Dependent variable is an output variable of the experiment process. The Response variables of an experiment derive from the experiment goals; they are the characteristics we want to investigate: if directly measurable, it is a Dependent variables. Otherwise we use simple Dependent variables to obtain compound Response variables.

Usually we utilize the mean and/or standard deviation of each characteristic we want to investigate.

Dependent variables (Output variables)

""" Input Variables or Alternatives

Input variables are Independent variables, which affect output.

They can be classified as **Factors** or Alternatives, and **Noises** | Noises (i.e., Undesired variables factors included).

Factors and Noises Noises are **measurable** inputs which affect output and we **cannot** control.
There are:

- Variations that we are *able to predict:*
 - Factors that we allow change, i.e., desired variations
 - Noise (Undesired Variable Factors), i.e., undesired variations that we predict and handle as Blocking Variables
 - Instances of the latter are the Level of expertise (LOW, HIGH) and the Gender of student subjects participating to an experiment where those variables are not of interest.

• **Noise** that we are *unable to predict*.

Beside the Undesired Variable Factors, as already mentioned, further Factors are variables which effects on output and we are able to control. They include:

- **Parameters** (or **Constant Factors**); we are not intended to investigate the effect of these input variables on output; we set each of them to some value and control them at that *constant level*.
- **Design Factors**, i.e. those Input variables, which effects on output we want to investigate. We call **Treatment** each of the values we select for these variables.

Searching for Relationships among Variables

- Descriptive relationship
- Correlations
- Causal relationship
 - Deterministic relationship
 - Statistic relationship

- Internal/External Replication
- Experimental Error