GIT

Distributed Version Control and
Source Code Management

DICII — ISSSR 2014/2015
© 2014 Manuel Mastrofini

Agenda

* Version Control Systems
o GIT

— Basics
— Branching

Version Control

* A system that records changes to a file or
set of files over time

* A Version Control System (VCS) allows to:
— revert files back to a previous state

— revert the entire project back to a previous
state

— review and compare changes made over time

— see who last modified a file and when

| ocal Version Control

 Many people’s version-control method of choice
IS to copy files into another directory (perhaps a
time-stamped directory)

— Main problem: error prone

* |t is easy to write to the wrong file or copy over files you do
not mean to

— Solution: local VCSs with a simple database that
keeps all the changes to files under revision control

« Example: rcs Local Computer

— It keeps patch sets (i.e., the differences
between files) in a special format on
disk; it can then recreate what any file
looked like at any point in time by
adding up all the patches.

Centralized Version Control

* Main problem of local version control:
collaboration with other developers

» Solution: deploy of Centralized Version
Control Systems (CVCs)

— Single server that contains all versioned files
— Access via clients

— Fine-grained access rights Gentral VS erver
control ° -

— Examples: CVS, Subversion,
Perforce

Distributed Version Control

Main problem of CVC: single point of failure

Solution: distribute the repository to every
client

— Examples: GIT, Mercurial, Bazaar, Darcs
LVCSs CVCSs

Local Computer Computer A Central VCS Server

DICII — ISSSR 2014/2015
© 2014 Manuel Mastrofini

GIT BASICS

GIT: a Distributed Version Control System

 History of Linux kernel source change
management

— 1991-2002: changes distributed as patches and
archive files

— 2002-2005: BitKeeper, a DVCS by BitMover

« Bankrupt of the company

 Creation of GIT by Linux community (headed by Linus
Torvalds)

— 2005-today: GIT
* Focus
— Support for parallel development
— Performance in terms of speed for big projects

GIT: a Distributed Version Control System

* Most operations are just local
— Browse history
— Commit
— Compare versions

 All changes are check-summed and can be
referred to via such check sum (SHA-1)

« Almost all changes only add information to
the database

* S0, changes are tracked and can be reverted

GIT Data Management

* Project history represented as a stream of
project snapshots

» At every commit (I.e. the operation to create a
“restore point”), GIT saves a snapshot

« |If files have not changed, they are not stored again

Checkins over time -

I () Gt ()

I

DICII — ISSSR 2014/2015

© 2014 Manuel Mastrofini 10

GIT States
« Committed

Working Staging .git directory
_ .glt dlrectory Stores Directory Area (Repository)
metadata and object

database
» Modified

— Working directory

contains one checked- m

out version of the project
currently being worked

Typical workflow:

o Staged 1. Modify files in working directory.
_ _ 2. Stage files, adding snapshots of
— Staging area contains them to the staging area
the iIndex of staged files 3. Do a commit, which takes the files
and their snapshots from the staging area and stores them

permanently to your Git directory

DICII — ISSSR 2014/2015

© 2014 Manuel Mastrofini 11

Installation and First Configuration

« Download and run the installer

« Set username and email (commits will use
them)

— git config --global user.name <your username>
— git config --global user.email <your email>
« Set default editor
— git config --global core.editor <your editor>
» Check configuration or get help
— git config { --list | <key>}
— git help <key>

Create a Repository

* Point at the directory where to create the
repository in

* Initialize the repository: git init
— It will create the .git subdirectory

— Also a working directory is created and
pointed at: master

* No files are being tracked

Clone a Repository

 Download all files required to have a local
copy of the entire repository

— git clone <url> [repository name]

 { http | https | git }://<domain>/<project>/<repository
name>.git

— SSH or local protocols can be used

— It will create and Initialize a .git directory inside
the project folder named <repository name>

— Project files are inside the folder <repository
name> and they are all tracked

File Status Lifecycle

 Files in the working directory of the repository can
be tracked or untracked

« Untracked: not in last snapshot nor in staging area

i TraC ked Untracked Unmodified

— In last snapshot e
— Can be Edit the file

+ Unmodified
o

* Modified

« Staged .

« Check the status of files (list untracked, modified
and staged files)

— Qit status

DICII — ISSSR 2014/2015 15
© 2014 Manuel Mastrofini

Staging Files

add <file> stages a file (i.e. plan file for next commit)

Notice: adding a staged file means that in the next

commit it will be added as it was at the moment you
added it

— |If a staged file is modified, the committed file will not
Incorporate such changes

 After modifying, the git status command will show the file both
as staged and unstaged (original and modified version,
respectively)

* In order to commit the modified version, the file has to be added
again

« git diff shows changes not yet staged (but not all changes from
last commit)

— git diff --staged shows what is staged and is going to be committed
— git reset HEAD <file> unstages staged files

lgnoring Files

* The .gitignore file contains a list of files and folders
that should be not committed

— E.g. automatically generated log files, temporary files,
object or binary files

#Example
* Files and folders are specified via rules settings

.SpringBeans

— Glob patterns bin

— / at the end indicates a directory el

— 'at the beginning indicates a negation target/
.classpath

— # for comments .project

« Detalls: http://git-scm.com/book/en/v2/Git-Basics-
Recording-Changes-to-the-Repository#lgnoring-
Files

http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files

Committing Files

e git commit
— Staged files are committed

— Runs the editor and opens a file containing the output of
git status

git commit -m “<comment>" allows to add a comment and skit
the editor

— After committing, the impacted branch and its checksum
are shown

* git commit --amend merges into the last commit the
changes happened after that commit (e.g. for a
forgotten file)

* gitlog lists the commits made in that repository In
reverse chronological order and has a number of
options for different formats and information

— http://qgit-scm.com/book/en/v2/Git-Basics-Viewing-the-
Commit-History

http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History

An Example of Commit Results

98ca9

commit size
tree 92ec2
author Scott
committer Scott

The initial commit of my project

tree size

blob 5b1d3 README
blob 911e7 LICENSE
blob cbaba test.rb

DICIl — ISSSR 2014/2015
© 2014 Manuel Mastrofini

5b1d3

== Testing library

This library is used to test
Ruby projects.

blob size

The MIT License

Copyright (c) 2008 Scott Chacon

Permission is hereby granted,
free of charge, to an

blob size

require 'logger'
require ‘test/unit’

class Test::Unit::TestCase

19

An Example of Commit Results

5b1d3

blob size

== Testing library

This library is used to test
Ruby projects.

Ko

L)
98ca9

commit size
tree 92ec2
author Scott
committer Scott

tree size blob size
blob 5b1d3 README
blob 911e7 LICENSE
blob cba®a test.rb Copyright (c) 2008 Scott Chacon

Permission is hereby granted,
free of charge, to an

The MIT License

The initial commit of my project

lob size

Sequence of
commits

require 'logger'
require 'test/unit’

class Test::Unit::TestCase

o
° 98ca9 34ac2 f30ab

commit size commit size commit size

tree 92ec2 tree 184ca tree 0de24

parent parent 98ca9 parent 34ac2

author Scott B author Scott - author Scott
committer Scott committer Scott committer Scott

The initial commit of my project Fixed bug #1328 - stack overflow add feature #32 - ability to add new
under certain conditions formats to the central interface

Snapshot A Snapshot B

DICIl — ISSSR 2014/2015 20
© 2014 Manuel Mastrofini

Removing, Renaming and Reverting Files

« Toremove a file it has to be untracked

— If the file is removed from the working directory, it becomes
unstaged

— @it rm <file> stages the removal

* Next commit will produce a snapshot without the removed files

— If you previously modified and added a file to remove, use --f to force
removal (safety feature to avoid data loss)

— If you want to remove a file from the staging area and untrack it without
removing it from the working directory, use git rm —cached <file>

« Renaming a file is not an explicit command

— git mv <file_source> <file_destination>
It adds <file_destination> and removes <file_source>

* Reverting a file to the last committed version
— git checkout <file>

Tagging
Tags are labels to associate to commits, e.g. to mark release
points
git tag shows all available tags alphabetically

git tag -a <tagname> -m ‘<message>’ creates a new tag named
<tagname> and stores it

— Tagger info, date and message are also stored

— Tag data are shown along with tagged commit info when running
git show

— Tags can be signed by replacing -a with -s
« Qit tag —v <tagname> verifies the signature

— Adding a checksum option at the end of the command tags the
corresponding commit

Tags have to be pushed
— One at a time: git push <repository> <tagname>
— All at once: git push <repository> --tags

Stashing

 Qit stash stores the current “dirty” status of the
commit (modifications and staging information) in
a stack for future revert, but it does not commit
anything

— @it stash list lists all stashes

— git stash apply [<name>] applies the <name> stash
(or the most recent if no name is specified)

* If reverting to that stash is impossible due to changes to
modified files into the stash, merge conflicts are generated

— @it stash drop removes the stash from the stack
— git stash pop applies and drops the stash

— git stash show -p <name> | git apply -r unapplies an
applied stash

BRANCHING

Branching: Create a Branch

« After the first commit, the repository has at least one
commit (generally named master)

« Usually, a deviation in the main line of development
— @it branch <branch name>

 Abranch is a pointer to a commit

« HEAD is the pointer to the
current branch

o
°

master

98ca9 34ac? f30ab

Snapshnt A Snapshot B &

DICIl - ISSSR 2014/2015
© 2014 Manuel Mastrofin

25

Branching: Create a Branch

 git branch testlng

———

1

1

1

1

1

1

)

1

1

' 98ca9 34ac2 3

! |

| 1

: |
1 1

1 1

j Snapshot A Snapshot B ' o
! ! -
1 ! °

1 0 g

1 1

1 1

1 1

| 1

98ca9 - 34ac?2 f30ab

“
testlng

DICIl — ISSSR 2014/2015
© 2014 Manuel Mastro fini

Branching: Switch Branch

» git checkout testing

908ca9 - 34ac?2 - f30ab

testing

DICII — ISSSR 2014/2015

© 2014 Manuel Mastro fini 27

Branching: Impact of a Commit

» git commit —m “committed change”

testing

DICIl — ISSSR 2014/2015
© 2014 Manuel Mastro fini

28

Branching: Multiple Branches

 git checkout master
* git commit —m “other commit”

98ca9 - 34ac2 - f30ab

¢
/ 87ab2
\

DICII — ISSSR 2014/2015

© 2014 Manuel Mastro fini 29

Merging Branches: Fast-Forward

* Merge a commit with another commit that can be
reached by following the first commit’s history

(—) @

Co e B C1 - C2

© 2014 Manuel Mastrofini 30

Merging Branches: Fast-Forward

 git checkout master

* git merge hotfix

31

Merging Branches: Remove Branch
 git branch -d hotfix

co - C1 -—— C2 -+ C4

Merging Branches: 3-Way Merge

 git checkout master
* git merge 1Ss53

Common
Ancestor Snapshot to

Merge Into
Co - c1 -qe——<:
Snapshot to
Merge In

s)

33

Merging Branches: 3-Way Merge

 git checkout master
* git merge iss53

Co B — C1 - C2 B C4

__

DICII — ISSSR 2014/2015
© 2014 Manue | Mastro fini

34

Merging Branches: Conflicts

If the same part of the same file was modified in the
two branches to merge, there is a conflict and merging
IS suspended

— E.g. Hotfix branch included changes on the same files as
1ISSS53

Command git status shows unmerged files
File markers are inserted into the conflicting files

— E.g. "<<<<<<< HEAD’, "=======" and ">>>>>>> |sss53”
Conflict has to be manually solved, then files must be
re-added

Co cal C2 C4 C5

C3 C5

Branch Management

git branch shows existing branches

git branch -v shows last commit on all existing
branches

git branch --merged shows all branches merged
Into the current branch

git branch --no-merged shows all branches not
merged into the current branch

git branch -d <branch-name> deletes <branch-
name>

— It succeeds If it has been merged into the current
branch

— In order to force removal, use -D in place of -d

Remote Repositories
 Remotely stored versions of the project

— git remote [-v] shows all remote repository
names (and URLS)

* git remote show <name> presents additional
Information on <name>

— git remote add <repo> <url> creates a new
remote repository

— git remote rename <original name> <new
name> renames the repository

— git remote rm <name> removes the repository

Remote Repositories

* git push <repo> <branch> pushes the project to the
remote repository, specifically on the named branch

— It works only when writing is allowed
— It works only when nobody else pushed after last local fetch
— Add :[remote branch-name] if local and remote names differ

it fetch <repo> pulls all data not yet pulled
— git fetch origin pulls any new work pushed to the server
— No merging is performed

— Fetching does not automatically create a local, editable copy
of a fetched branch
* Qgit merge <server>/<branch-name> merges it into the local branch

* git merge checkout -b <branch-name> <server>/<branch-name>
creates a tracking branch

— --track in place of <branch-name> to use the remote name

Remote Branches

« References to the state of branches on the remote repository
— E.g. clone the master branch from "ourcompany” server

git.ourcompany.com

£z

0b743 - abb4c - 4265

' git clone janedoe@git.ourcompany.com:project.git

My Computer

0b743 --— abb4c --—— 4265

& Local branch

DICII — ISSSR 2014/2015
© 2014 Manuel Mastrofini

39

« References to the state of branches on the remote repository

Remote Branches

— E.g. clone the master branch from "ourcompany” server

— When doing some work on local branch while someone else is
pushing to git.ourcompany.com and updates its master branch,

then histories move forward differently

git.ourcompany.com

BN

DICII — ISSSR 2014/2015
© 2014 Manuel Mastrofini

0b743 - abb4c - 4265 2 —=— 31b8e - 190a3
Someone else pushes
My Computer
0b743 - abb4c - 4265 - a38de - 893cf

.

40

Remote Branches: Synchronizing

* Qit fetch origin

— Loads data from the origin server not yet stored locally
— Updates the local database by moving origin/master

pointer to its new, more up-to-date position

git.ourcompany.com

[==

DICII — ISSSR 2014/2015
© 2014 Manuel Mastrofini

0b743 -+ abb4c -+ 4265 -+—— 31b8e -+— 190a3
’ git fetch origin
My Computer

Y

0b743 - abb4c --— 4265 -+ 31b8e -+ 190a3

h
\\
a38de - 893cf

-

41

Branch Rebase

* An alternative to the three-way merge

— It consists in applying the patch of the branch
to merge on top of the branch to merge into

e

Co - 04 - c2 - 3

o

DICII — ISSSR 2014/2015
© 2014 Manue | Mastro fini

42

Branch Rebase

 git checkout experiment

experiment

» git rebase master

Co - C1 - C2 B — C3 -+

DICII — ISSSR 2014/2015
© 2014 Manuel Mastrofini

43

Branch Rebase

 Different from merging

C4

Rebasing

co - C1 e C2 -+ C3

e

Co I — C1 - C

DICII — ISSSR 2014/2015
© 2014 Manuel Mastrofini

- c4'

Merging .
e D

5

-

44

Branch Rebase

 git checkout master
e git merge experiment

DICII — ISSSR 2014/2015
© 2014 Manuel Mastrofini

c4'

45

Branch Rebase

« Warning: do not rebase commits that have
already been pushed to the upstream

git.teaml.ourcompany.com

€5

@ e e -

My Computer

c5

e -
L

DICII — ISSSR 2014/2015
© 2014 Manuel Mastrofini

Branch Rebase

« Warning: do not rebase commits that have
already been pushed to the upstream

git.teaml.ourcompany.com

C5 -+ c4'

rd

C1 C4 C6
c5 -+—— c4' teamone/master

C1<—C4<—C6\
A e

My Computer

DICII — ISSSR 2014/2015
© 2014 Manuel Mastrofini

Examples of Branching Use

« Gradually more stable code bottom-up, e.g.:
— Master: stable code

— Develop/Next: not necessarily stable, but under
test

— Topic: currently working on, short-life branches

DICII — ISSSR 2014/2015
© 2014 Manuel Mastrofini

48

Distributed Workflows

Centralized workflow

shared
repository

developer developer developer

Dictator and Lieutenants Workflow
— Developers rebase the main repository

— They ask the lieutenants to merge into
their masters

— They ask the dictator to merge into the
main repository

dictator

blessed
repository

* Integration-manager workflow

— Developers clone the main repository
and have their own public repository

— Ask the manager to merge their
repository into the main repository

— The manager adds it as public and
merge into the main repository

developer
public

developer

blessed
repository

public

integration developer developer
manager private private
developer developer developer
public public public
DICII — ISSSR 2014/2015 49

© 2014 Manuel Mastrofini

References

 http://git-scm.com/book/en/

© 2014 Manuel Mastrofini

50

http://git-scm.com/book/en/
http://git-scm.com/book/en/
http://git-scm.com/book/en/

