
DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

GIT

Distributed Version Control and

Source Code Management

1

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Agenda

• Version Control Systems

• GIT

– Basics

– Branching

2

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Version Control

• A system that records changes to a file or

set of files over time

• A Version Control System (VCS) allows to:

– revert files back to a previous state

– revert the entire project back to a previous

state

– review and compare changes made over time

– see who last modified a file and when

3

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Local Version Control

• Many people’s version-control method of choice
is to copy files into another directory (perhaps a
time-stamped directory)

– Main problem: error prone

• It is easy to write to the wrong file or copy over files you do
not mean to

– Solution: local VCSs with a simple database that
keeps all the changes to files under revision control

• Example: rcs

– It keeps patch sets (i.e., the differences
between files) in a special format on
disk; it can then recreate what any file
looked like at any point in time by
adding up all the patches.

4

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Centralized Version Control

• Main problem of local version control:
collaboration with other developers

• Solution: deploy of Centralized Version
Control Systems (CVCs)

– Single server that contains all versioned files

– Access via clients

– Fine-grained access rights
control

– Examples: CVS, Subversion,
Perforce

5

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Distributed Version Control

• Main problem of CVC: single point of failure

• Solution: distribute the repository to every
client

– Examples: GIT, Mercurial, Bazaar, Darcs

6

LVCSs CVCSs DVCSs

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

GIT BASICS

7

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

GIT: a Distributed Version Control System

• History of Linux kernel source change
management

– 1991-2002: changes distributed as patches and
archive files

– 2002-2005: BitKeeper, a DVCS by BitMover

• Bankrupt of the company

• Creation of GIT by Linux community (headed by Linus
Torvalds)

– 2005-today: GIT

• Focus

– Support for parallel development

– Performance in terms of speed for big projects

8

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

GIT: a Distributed Version Control System

• Most operations are just local

– Browse history

– Commit

– Compare versions

• All changes are check-summed and can be
referred to via such check sum (SHA-1)

• Almost all changes only add information to
the database

• So, changes are tracked and can be reverted

9

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

GIT Data Management

• Project history represented as a stream of

project snapshots

• At every commit (i.e. the operation to create a

“restore point”), GIT saves a snapshot

• If files have not changed, they are not stored again

10

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

GIT States
• Committed

– .git directory stores
metadata and object
database

• Modified

– Working directory
contains one checked-
out version of the project
currently being worked

• Staged

– Staging area contains
the index of staged files
and their snapshots

11

Typical workflow:

1. Modify files in working directory.

2. Stage files, adding snapshots of

them to the staging area

3. Do a commit, which takes the files

from the staging area and stores them

permanently to your Git directory

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Installation and First Configuration

• Download and run the installer

• Set username and email (commits will use
them)

– git config --global user.name <your username>

– git config --global user.email <your email>

• Set default editor

– git config --global core.editor <your editor>

• Check configuration or get help

– git config { --list | <key> }

– git help <key>

12

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Create a Repository

• Point at the directory where to create the

repository in

• Initialize the repository: git init

– It will create the .git subdirectory

– Also a working directory is created and

pointed at: master

• No files are being tracked

13

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Clone a Repository

• Download all files required to have a local

copy of the entire repository

– git clone <url> [repository name]

• { http | https | git }://<domain>/<project>/<repository

name>.git

– SSH or local protocols can be used

– It will create and initialize a .git directory inside

the project folder named <repository name>

– Project files are inside the folder <repository

name> and they are all tracked

14

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

File Status Lifecycle
• Files in the working directory of the repository can

be tracked or untracked

• Untracked: not in last snapshot nor in staging area

• Tracked

– In last snapshot

– Can be

• Unmodified

• Modified

• Staged

• Check the status of files (list untracked, modified
and staged files)

– git status

15

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Staging Files
• add <file> stages a file (i.e. plan file for next commit)

• Notice: adding a staged file means that in the next
commit it will be added as it was at the moment you
added it

– If a staged file is modified, the committed file will not
incorporate such changes

• After modifying, the git status command will show the file both
as staged and unstaged (original and modified version,
respectively)

• In order to commit the modified version, the file has to be added
again

• git diff shows changes not yet staged (but not all changes from
last commit)

– git diff --staged shows what is staged and is going to be committed

– git reset HEAD <file> unstages staged files

16

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Ignoring Files

• The .gitignore file contains a list of files and folders
that should be not committed

– E.g. automatically generated log files, temporary files,
object or binary files

• Files and folders are specified via rules

– Glob patterns

– / at the end indicates a directory

– ! at the beginning indicates a negation

– # for comments

• Details: http://git-scm.com/book/en/v2/Git-Basics-
Recording-Changes-to-the-Repository#Ignoring-
Files

17

#Example
.settings
.springBeans
bin
build.sh
/build
target/
.classpath
.project

http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files
http://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#Ignoring-Files

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Committing Files
• git commit

– Staged files are committed

– Runs the editor and opens a file containing the output of
git status

• git commit -m “<comment>” allows to add a comment and skit
the editor

– After committing, the impacted branch and its checksum
are shown

• git commit --amend merges into the last commit the
changes happened after that commit (e.g. for a
forgotten file)

• git log lists the commits made in that repository in
reverse chronological order and has a number of
options for different formats and information

– http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-
Commit-History

18

http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History
http://git-scm.com/book/en/v2/Git-Basics-Viewing-the-Commit-History

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

An Example of Commit Results

19

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

An Example of Commit Results

20

First commit

Sequence of
commits

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Removing, Renaming and Reverting Files

• To remove a file it has to be untracked

– If the file is removed from the working directory, it becomes
unstaged

– git rm <file> stages the removal

• Next commit will produce a snapshot without the removed files

– If you previously modified and added a file to remove, use --f to force
removal (safety feature to avoid data loss)

– If you want to remove a file from the staging area and untrack it without
removing it from the working directory, use git rm –cached <file>

• Renaming a file is not an explicit command

– git mv <file_source> <file_destination>

• It adds <file_destination> and removes <file_source>

• Reverting a file to the last committed version

– git checkout <file>

21

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Tagging
• Tags are labels to associate to commits, e.g. to mark release

points

• git tag shows all available tags alphabetically

• git tag -a <tagname> -m ‘<message>’ creates a new tag named
<tagname> and stores it

– Tagger info, date and message are also stored

– Tag data are shown along with tagged commit info when running
git show

– Tags can be signed by replacing -a with -s

• git tag –v <tagname> verifies the signature

– Adding a checksum option at the end of the command tags the
corresponding commit

• Tags have to be pushed

– One at a time: git push <repository> <tagname>

– All at once: git push <repository> --tags

22

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Stashing

• git stash stores the current “dirty” status of the
commit (modifications and staging information) in
a stack for future revert, but it does not commit
anything

– git stash list lists all stashes

– git stash apply [<name>] applies the <name> stash
(or the most recent if no name is specified)

• If reverting to that stash is impossible due to changes to
modified files into the stash, merge conflicts are generated

– git stash drop removes the stash from the stack

– git stash pop applies and drops the stash

– git stash show -p <name> | git apply -r unapplies an
applied stash

23

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

BRANCHING

24

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Branching: Create a Branch

• After the first commit, the repository has at least one
commit (generally named master)

• Usually, a deviation in the main line of development

– git branch <branch name>

• A branch is a pointer to a commit

• HEAD is the pointer to the
current branch

25

Branch

Last
Commit

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Branching: Create a Branch

• git branch testing

26

Branch

Last
Commit

Branch

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Branching: Switch Branch

• git checkout testing

27

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Branching: Impact of a Commit

28

• git commit –m “committed change”

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Branching: Multiple Branches

29

• git checkout master

• git commit –m “other commit”

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Merging Branches: Fast-Forward

• Merge a commit with another commit that can be
reached by following the first commit’s history

30

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Merging Branches: Fast-Forward

• git checkout master

• git merge hotfix

31

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Merging Branches: Remove Branch

• git branch -d hotfix

32

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Merging Branches: 3-Way Merge

• git checkout master

• git merge iss53

33

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Merging Branches: 3-Way Merge

• git checkout master

• git merge iss53

34

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Merging Branches: Conflicts
• If the same part of the same file was modified in the

two branches to merge, there is a conflict and merging
is suspended

– E.g. Hotfix branch included changes on the same files as
isss53

• Command git status shows unmerged files

• File markers are inserted into the conflicting files

– E.g. “<<<<<<< HEAD”, “=======“ and “>>>>>>> isss53”

• Conflict has to be manually solved, then files must be
re-added

35

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Branch Management

• git branch shows existing branches

• git branch -v shows last commit on all existing
branches

• git branch --merged shows all branches merged
into the current branch

• git branch --no-merged shows all branches not
merged into the current branch

• git branch -d <branch-name> deletes <branch-
name>

– It succeeds if it has been merged into the current
branch

– In order to force removal, use -D in place of -d

36

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Remote Repositories
• Remotely stored versions of the project

– git remote [-v] shows all remote repository

names (and URLs)

• git remote show <name> presents additional

information on <name>

– git remote add <repo> <url> creates a new

remote repository

– git remote rename <original name> <new

name> renames the repository

– git remote rm <name> removes the repository

37

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Remote Repositories
• git push <repo> <branch> pushes the project to the

remote repository, specifically on the named branch

– It works only when writing is allowed

– It works only when nobody else pushed after last local fetch

– Add :[remote branch-name] if local and remote names differ

• git fetch <repo> pulls all data not yet pulled

– git fetch origin pulls any new work pushed to the server

– No merging is performed

– Fetching does not automatically create a local, editable copy
of a fetched branch

• git merge <server>/<branch-name> merges it into the local branch

• git merge checkout -b <branch-name> <server>/<branch-name>
creates a tracking branch

– --track in place of <branch-name> to use the remote name

38

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Remote Branches
• References to the state of branches on the remote repository

– E.g. clone the master branch from ”ourcompany” server

39

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Remote Branches
• References to the state of branches on the remote repository

– E.g. clone the master branch from ”ourcompany” server

– When doing some work on local branch while someone else is
pushing to git.ourcompany.com and updates its master branch,
then histories move forward differently

40

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Remote Branches: Synchronizing
• git fetch origin

– Loads data from the origin server not yet stored locally

– Updates the local database by moving origin/master
pointer to its new, more up-to-date position

41

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Branch Rebase

• An alternative to the three-way merge

– It consists in applying the patch of the branch

to merge on top of the branch to merge into

42

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Branch Rebase

• git checkout experiment

• git rebase master

43

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Branch Rebase

• Different from merging

44

Merging

Rebasing

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Branch Rebase

• git checkout master

• git merge experiment

45

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Branch Rebase

• Warning: do not rebase commits that have

already been pushed to the upstream

46

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Branch Rebase

• Warning: do not rebase commits that have

already been pushed to the upstream

47

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Examples of Branching Use

48

• Gradually more stable code bottom-up, e.g.:

– Master: stable code

– Develop/Next: not necessarily stable, but under
test

– Topic: currently working on, short-life branches

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

Distributed Workflows

• Dictator and Lieutenants Workflow

– Developers rebase the main repository

– They ask the lieutenants to merge into
their masters

– They ask the dictator to merge into the
main repository

49

• Integration-manager workflow

– Developers clone the main repository
and have their own public repository

– Ask the manager to merge their
repository into the main repository

– The manager adds it as public and
merge into the main repository

• Centralized workflow

DICII – ISSSR 2014/2015
© 2014 Manuel Mastrofini

References

• http://git-scm.com/book/en/

50

http://git-scm.com/book/en/
http://git-scm.com/book/en/
http://git-scm.com/book/en/

