
© 2013 Info-One S.r.l.s.

GIT

Distributed Version Control and
Source Code Management

1

© 2013 Info-One S.r.l.s.

Agenda

• Version Control Systems

• GIT

– Basics

– Branching

– Advanced use

2

© 2013 Info-One S.r.l.s.

Version Control

• A system that records changes to a file or
set of files over time

• A Version Control System (VCS) allows to:

– revert files back to a previous state

– revert the entire project back to a previous
state

– review changes made over time

– see who last modified a file

– see who introduced an issue and when

3

© 2013 Info-One S.r.l.s.

Local Version Control

• Many people’s version-control method of choice
is to copy files into another directory (perhaps a
time-stamped directory)

– Problem: error prone

• It is easy to write to the wrong file or copy over files you do
not mean to

– Solution: local VCSs with a simple database that
keeps all the changes to files under revision control

• Example: rcs

– It keeps patch sets (i.e., the differences
between files) in a special format on
disk; it can then recreate what any file
looked like at any point in time by
adding up all the patches.

4

© 2013 Info-One S.r.l.s.

Centralized Version Control

• Problem of local version control: collaboration
with other developers

• Solution: deploy of Centralized Version
Control Systems (CVCs)

– Single server that contains all versioned files

– Access via clients

– Fine-grained access rights
control

– Examples: CVS, Subversion,
Perforce

5

© 2013 Info-One S.r.l.s.

Distributed Version Control

• Problem of CVC: single point of failure

• Solution: distribute the repository to every
client

– Examples: GIT, Mercurial, Bazaar, Darcs

6

LVCSs CVCSs DVCSs

© 2013 Info-One S.r.l.s.

GIT BASICS

7

© 2013 Info-One S.r.l.s.

GIT: a Distributed Version Control System

• History of Linux kernel source change
management

– 1991-2002: changes distributed as patches and
archive files

– 2002-2005: BitKeeper, a DVCS by BitMover

• Bankrupt of the company

• Creation of GIT by Linux community (headed by Linus
Torvalds)

– 2005-today: GIT

• Focus: simple design, support for parallel
development and performance in terms of
speed for big projects

8

© 2013 Info-One S.r.l.s.

GIT’s Data Management

• Snapshots of the project file system

– At every commit (i.e. the operation you make at a
given time to create a “restore point”), GIT takes
a picture of all project files and stores a reference
to it

• If files have not changed, they are not stored again

• Every file is check-summed (SHA-1 hash)

9

© 2013 Info-One S.r.l.s.

GIT Data States
• States:

– Committed: Data are stored in
the local database

– Modified: Data are changed,
but not stored in the local
database

– Staged: Data are marked to go
in the next commit

• Directories

– Git Directory: directory for
storing metadata and object
database (this is copied when
a repository is cloned)

– Working Directory: one
checked-out version of the
project

– Staging area: file containing
staged data information (index)

10

© 2013 Info-One S.r.l.s.

Installation and First Configuration
• Download and run the installer

• Set username and email (commits will use them)

– git config --global user.name <your username>

– git config --global <your email>

• Set default editor, diff tool

– git config --global core.editor <your editor>

– git config --global merge.tool <your diff tool>

• Check configuration or get help

– git config { --list | <key> }

– git help config

• Create command aliases

– git config –global alias.<alias> <command>

11

© 2013 Info-One S.r.l.s.

Create or Clone a Repository

• Create a new repository

– Point at the directory

– Initialize the directory: git init

• It will create a subdirectory named .git containing all
repository files

• Clone a repository

– Download all files required to have a local

• git clone <url>

– { http | https | git }://<domain>/<project>/<repository name>.git

» SSH or local protocols can be used

• It will create and initialize a .git directory inside the project
folder named <repository name>

• Project files are inside the folder <repository name>

12

© 2013 Info-One S.r.l.s.

File Status Lifecycle
• Files in the working directory of the repository can be in two states

– Tracked

– Untracked

• Tracked files

– Were in the last snapshot

– Can be

• Unmodified

• Modified

• Staged

• Untracked files

– Were not in the last snapshot nor staging

• Right after cloning, all files are tracked and unmodified

• Check the status of files (list untracked, modified and staged files)

– git status

13

© 2013 Info-One S.r.l.s.

Staging Files
• add <file> stages a file (i.e. plan file for next commit)

• Notice: adding a staged file means that in the next
commit it will be added as it was at the moment you
added it

– If a staged file is modified, the committed file will not
incorporate such changes

• After modifying, the git status command will show the file both
as staged and unstaged (original and modified version,
respectively)

• In order to commit the modified version, the file has to be added
again

• git diff shows changes not yet staged (but not all changes from
last commit)

– git diff --cached or git diff --staged shows what is staged and is going to
be committed

– git reset HEAD unstages staged files

14

© 2013 Info-One S.r.l.s.

Ignoring Files
• The .gitignore file contains a list of files and folders that

should be not committed

– E.g. automatically generated log files, temporary files, object or
binary files

• Files and folders are specified via rules

– Glob patterns

• Simplified regular expression

– * for zero or more character matching

– [<characters>] for any character
inside the brackets

– ? For any single character

– [<char>-<char> for any character in the
interval

– **/ for any directory

– / at the end indicates a directory

– ! at the beginning indicates a negation

– # for comments

15

© 2013 Info-One S.r.l.s.

Committing Files
• git commit

– Staged files are committed, but unstaged files stay on the hard disk (not
in the repository)

– Runs the editor and opens a file containing the output of git status

• Adding -v to the command will add the output of git diff

• Comments can be added in the text file or inline

– git commit -m “<comment>”

– After committing, the impacted branch and its checksum are shown

– The committed records constitute a snapshot that can be reverted or
compared to other snapshots

• git commit --amend merges into the last commit the changes
happened after that commit (e.g. for a forgotten file)

• git log lists the commits made in that repository in reverse
chronological order and has a number of options for different
formats and information

16

© 2013 Info-One S.r.l.s.

An Example of Commit Results

17

First commit

Sequence of

commits

© 2013 Info-One S.r.l.s.

Removing, Renaming and Reverting Files

• To remove a file it has to be untracked

– If the file is removed from the working directory, it becomes
unstaged

– git rm stages the removal

• Next commit will produce a snapshot without the removed files

– If you previously modified and added a file to remove, use --f to force
removal

– If you want to remove a file from the staged area without removing it
from the working directory, use --cached

• Renaming a file is not an explicit command

– git mv <file_source> <file_destination>

• It adds <file_destination> and removes <file_source>

• Reverting a file to the last committed version

– git checkout <file>

18

© 2013 Info-One S.r.l.s.

Remote Repositories
• Remotely stored versions of the project

– git remote shows all remote repository names

• -v adds URLs

• git remote show <name> presents additional information

– git remote add <name> <url> creates a new remote repository

– git fetch <name> pulls all data not yet pulled

• git fetch origin pulls any new work that has been pushed to the server
from which the repository was cloned

• No merging is performed

– git push <name> <branch> pushes the project to the remote
repository

• It works only when writing is allowed

• It works only when nobody else pushed after last local pull

– git remote rename <original name> <new name> renames the
repository

– git remote rm <name> remove the repository

19

© 2013 Info-One S.r.l.s.

Tagging
• Tags are labels to associate to commits, e.g. to mark release points

• git tag shows all available tags alphabetically

– git tag –l <pattern> shows only tags matching the given pattern

• git tag -a <tagname> -m ‘<message>’ creates a new tag named
<tagname> and stores it in the git database, together with tagger
name, email address, date and a message

– It also runs the editor

– Tag data are shown along with tagged commit info when running git show

– Tags can be signed by replacing -a with -s

• git tag –v <tagname> verifies the signature

– Adding a checksum option at the end of the command tags the
corresponding commit

– Omitting all options (-a, -s and -m) leads to creating a lightweight tag (no
tag data)

• Tags have to be pushed one at a time (git push <repository>
<tagname>) or all at once (git push <repository> --tags)

20

© 2013 Info-One S.r.l.s.

BRANCHING

21

© 2013 Info-One S.r.l.s.

Branching: Create a Branch

• Creating a deviation in the main line of development

– git branch <branch name>

• A branch is a pointer to a commit

22

Branch

Last

Commit

git branch testing

© 2013 Info-One S.r.l.s.

Branching: Switch to a Branch

• HEAD is a pointer to the current branch

23

git checkout testing

© 2013 Info-One S.r.l.s.

Branching: Impact of a Commit

24

git commit -a -m 'made a change'

© 2013 Info-One S.r.l.s.

Branching: Multiple Branches

25

git checkout master

git commit -a –m ‘changed’

1

2

3

© 2013 Info-One S.r.l.s.

Merging Branches: Fast-Forward

• Merge a commit with another commit that can be
reached by following the first commit’s history

26

git checkout master

git merge hotfix

© 2013 Info-One S.r.l.s.

Merging Branches: 3-Way Merge

27

git checkout master

git merge iss53

Notice: If the same part of the same file was modified in the two branches

to merge, manual merge is required and the merge process is suspended.

Command git status shows unmerged files.

Notice: Hotfix branch is not contained in

the files in the iss53 branch

© 2013 Info-One S.r.l.s.

Branch Management

• git branch shows existing branches

• git branch -v shows last commit on all existing
branches

• git branch --merged shows all branches merged
into the current branch

• git branch --no-merged shows all branches not
merged into the current branch

• git branch -d <branch-name> deletes <branch-
name>

– It succeeds if everything has been merged into
another branch

– In order to force removal, use -D in place of -d

28

© 2013 Info-One S.r.l.s.

Examples of Branching

29

Remove issue 91

Merge dumbidea

Merge iss91v2

Gradually more stable code bottom-up, e.g.:

Master: stable code

Develop/Next: not necessarily stable, but under test

Topic: currently working on, short-life branches

© 2013 Info-One S.r.l.s.

Remote Branches
• References to the state of branches on the remote repository

– E.g. clone the master branch from ”ourcompany” server

• When doing some work on local branch while someone else is pushing
to git.ourcompany.com and updates its master branch, then histories
move forward differently

30

© 2013 Info-One S.r.l.s.

Remote Branches: Synchronizing (1)
• git fetch origin

– Loads data from the origin
server not yet stored locally

– Updates the local database
by moving origin/master
pointer to its new, more up-
to-date position

31

© 2013 Info-One S.r.l.s.

Remote Branches: Synchronizing (2)

• Fetching does not automatically create a local,
editable copy of a fetched branch

– git merge <server>/<branch-name> has to be run to merge
it into the local branch

– git merge checkout -b <branch-name> <server>/<branch-
name> has to be run in order to have a local copy of that
branch, i.e. to create a tracking branch

• git merge checkout --track <server>/<branch-name> if local and
remote branch names are the same

• git push <server> <branch-name> synchronizes local
branches with remote repository

– Add :[remote branch-name] if local and remote names
differ

• git push <server> :<branch-name> deletes the remote
branch

32

© 2013 Info-One S.r.l.s.

Branch Rebase (1)

• An alternative to the three-way merge

– It consists in applying the patch of the branch

to merge on top of the branch to merge into

33

git checkout experiment

git rebase master

git checkout master

git merge experiment

Warning: do not rebase commits that have already

been pushed to the upstream, in order to avoid people

who based their work on those commits to merge theirs

© 2013 Info-One S.r.l.s.

Branch Rebase (2)

34

git rebase --onto master server client

git checkout master

git merge client

The first command means: “check out

the client branch, figure out the

patches from the common ancestor

of the client and server branches, and

then replay them onto master”.

© 2013 Info-One S.r.l.s.

ADVANCED USE

35

© 2013 Info-One S.r.l.s.

Distributed Workflows

• Integration-manager workflow

– Developers clone the main
repository and have their own
public repository

– Ask the manager to merge their
repository into the main repository

– The manager adds it as public and
merge into the main repository

36

• Dictator and Lieutenants Workflow

– Developers rebase the main repository

– They ask the lieutenants to merge into
their masters

– They ask the dictator to merge into the
main repository

• Centralized workflow

© 2013 Info-One S.r.l.s.

Stashing

• git stash stores the current “dirty” status of the commit
(modifications and staging information) in a stack for future
revert, but it does not commit anything

– git stash list lists all stashes

– git stash apply <name> applies the <name> stash (or the most
recent if no name is specified)

• If reverting to that stash is impossible due to changes to modified files
into the stash, merge conflicts are generated

– git stash drop removes the stash from the stack

– git stash pop applies and drops the stash

– git stash show -p <name> | git apply -r unapplies an applied
stash

– git stash branch <branchname> creates a new branch based on
the commit current when stashing and applies the stash

37

© 2013 Info-One S.r.l.s.

Changing Local History
• git commit –amend allows to modify last commit message

– If files are added or removed, it updates the commit according to
changes in the staging area

– To change older commits, interactive rebase command is required

• E.g. git rebase -i HEAD~3 to change last 3 commits, then follow the interactive
tool instructions

• It allows to reording commits

• It allows merging commits

• It allows splitting commits

• filter-branch command for changes affecting all commits

– git filter-branch --tree-filter <command> HEAD

• --tree-filter applies <command> for all checked-out commits

– E.g. <command> = rm –f <file>

– Project root can be changes

– Metadata, e.g. email address, can be updated

38

© 2013 Info-One S.r.l.s.

Debugging with GIT

• git blame [-L <range>] <file> shows the list of
commits that modified the lines in <range> in <file>

• git blame -C [-L <range>] <file> shows the list of all
files where the lines in <range> of <file> were in
their history

• git bisect start, git bisect bad, and git bisect good
<goodcommit>

– It marks the current commit as bad, <goodcommit> as
good and checkouts the one half way, so to enable
testing it

• Using git bisect bad/good will keep on the binary search of the
commit which introduced an issue

• git bisect reset ends the search

39

© 2013 Info-One S.r.l.s.

Submodules
• A project or library referenced by the current tracked

project that has to be dealt with independently

– git submodule add <url> <name> clones the repository at
<url> in the subdirectory <name> of the current project

• Information on the submodule are in the .gitmodules file

• Notice that the current project has a snapshot of that repository
and cannot have a symbolic reference (e.g. master)

• When browsing to the directory of the submodule, command
scope changes accordingly

• When cloning a project with submodules, directories of
submodules are cloned, but they are empty

– git submodule init and git submodule update initialize and populate it

• git submodule update has to be run whenever a change is made
on the submodule and the reference in .gitmodules changes

– Changes to the submodule should be always performed on a branch

40

© 2013 Info-One S.r.l.s.

Subtrees

• Alternative to Submodules

• git read-tree --prefix=<subdirectory> -u <branch>

– It pulls <branch> into <subdirectory> of the currently
checked out branch (main branch)

– The branch can be checked out and updated

– Changes can be merged into the main branch

• git merge -s subtree <subtreebranch>

– --squash pre-populates the comment

• git diff-tree -p <subtreebranch> must be used in place of diff
to compare unstaged changes against <subtreebranch>

• git diff-tree -p < remotesubtreebranch > must be used to
compare unstaged changes against <remotesubtreebranch>

41

© 2013 Info-One S.r.l.s.

Miscellaneous
• Many configuration can be via git --config

– Formatting, colors, external tools, server action rights

• Configuration can be for all Git projects, for one project or for a path

– Git Attributes

• Binary and binary-like files

• Keyword expansions-like behavior

• Repository export

• Hooks

– Pre-commit, prepare-commit-msg, commit-msg

– Post-commit

– Applypatch-msg, pre-applypatch, post-applypatch

– Pre-rebase

– Post-checkout

– Post-merge

– Pre-receive, post-receive

– Update

42

© 2013 Info-One S.r.l.s.

References

• http://git-scm.com/book/en/

43

