

Managing Technical Debt with the SQALE Method

Jean-Louis Letouzey, Michel Ilkiewicz
inspearit

Arcueil, France
jean-louis.letouzey@inspearit.com
michel.ilkiewicz@inspearit.com

Keywords – Technical Debt; quality;
source code; quality model; analysis
model; SQALE.

 INTRODUCTION

It's pretty easy to get a rough
estimate of the Technical Debt of an
application. What is more difficult is to
manage the debt properly. The latest
version (V1.0) of the SQALE method
(Software Quality Assessment Based
on Lifecycle Expectations) allows an
accurate estimation of the debt. It also
includes new indexes and indicators to
manage the debt. We will show
through examples how they allow to
analyze the nature of this debt and to
prioritize remediation actions
depending on the project’s objectives
and constraints.

We will not dwell in detail on the
concept of Technical Debt. The
analogy initiated by Ward
Cunningham (1) has been widely
developed and is now the subject of
numerous blogs, articles (2, 3, 4) and
also a book (5).

What you should remember is that
the Technical Debt is the result of poor
code quality. Specifically, Ward
Cunningham used the term "not right
code” and said:

« Every minute spent on not right
code counts as interest on that debt.”

In the context of this article, we
limit ourselves to the Technical Debt
associated to the source code, whether
its origin is voluntary or not.
Specifically, if a project has set its
definition of “right code", any
violation of this definition creates debt
and the amount of debt is equal to the
remediation cost. The Technical Debt
of a project, an application, a portfolio
is equal to the remediation cost of all
violations in the code.

WHAT TECHNICAL DEBT

MANAGEMENT MEANS

If there is some consensus on the
definition of Technical Debt associated
to the source code, there is, to our
knowledge, no accepted definition of
what "Technical Debt Management”
means. We will try to define it briefly
here.

Technical Debt Management
means at minimum:
• Establish and publish the list of bad

coding practices that create debt.
• Establish and publish the

estimation model that transforms
the non-compliance findings into
the amount of Technical Debt.

• Set targets for debt. Specify what
level and what kind of debt is
acceptable for the project or the
organization.

• Monitor this debt over time
sufficiently frequently to be able to
react quickly.

• Analyze and understand this debt
in order to provide rationale for
decision. For example, analyze the
debt according to its age or origin
(i.e. identify the amount related to
architecture issues compared to
other issues like presentation or
format). Also analyze it in terms of
potential impact.

• Reimburse it. If debt has exceeded
the target, fix non-conformities to
return within acceptable limits.
Such reimbursement must take into
account specific constraints of the
project (deadline, budget, impact).

• Use the Technical Debt as input for
governance of application assets.
Analyze the debt of an application
in correlation with other
information such as business value
or quality perceived by users.

• Institutionalize the previous
practices. Put in place tools and
processes so that they produce the
benefits of a proactive Technical
Debt management.
Institutionalization should cover
development teams but also the
entire hierarchy concerned by the
application portfolio.

Accepted version of the article submitted to a special issue of IEEE Software. © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ESTIMATING TECHNICAL DEBT

The SQALE method was
developed by inspearit (at the time
called DNV ITGS) to measure and
manage as objectively as possible the
quality of source code delivered by
projects. This method is published
under an open source license and is
royalty free.

As it is based on the concept of
Technical Debt, it benefits from the
success of the concept:

• It has been the subject of a thesis
(6).

• It is implemented by multiple tool
vendors. Examples in this article
were produced using the SQALE
plugin of the Sonar tool (7).

• It is used by many organizations
worldwide to monitor Technical
Debt on a daily basis.

The definition Document of the
method, the list of available tools and
complementary information are
available on the official website (8).

The method is based on nine
principles and four concepts. Without
attempting to be exhaustive, we will
explain most of them in this article
with the objective of demonstrating
and illustrating through examples how
they help manage Technical Debt.

Let's see what the SQALE method
requests for identifying and estimating
the Technical Debt of an application or
a portfolio.

The project or the organization
must start by making a list of non-
functional requirements which are the
definition of "right code". In the
method, it is called the Quality Model.
This definition will serve as a
reference to estimate the Technical

Debt of the code. Any non-compliance
creates debt and, on the opposite, there
is no debt without breach of at least
one of the requirements. This is a
contract for the development team. Its
contents must be clear, verifiable and
non-redundant.

These requirements may cover
implementation, naming and
presentation. As suggested by (9), it is
also important to include architectural
and structural requirements. Table 1
gives some examples of requirements.

Using these requirements, the
SQALE method requests the project or
the organization to develop a model for
estimating the debt. For this, they must
associate each requirement to a
remediation function. It turns the
number of non-compliances into a
remediation cost. This can be a simple
multiplication factor or a more
complex function. It is important to
have a remediation function for each
requirement because the remediation
cost varies widely depending on the
nature of activities to be performed
during remediation.

Indeed, the remediation workload
is highly dependent on what we call
"remediation lifecycle".

For example, fixing badly indented
lines will be done very quickly, often
with the help of features included in
the IDE. There will be no impact on
unit tests and it won’t affect the
compiled code. The “remediation
lifecycle” is simple. Most requirements
related to presentation will need the
same “remediation lifecycle” and will
be associated with the same
remediation function.

In contrast, removing redundant
code (resulting from copy / paste) will
require a more complex lifecycle. One

will have to refactor classes, probably
create and debug new tests before
delivering a new version of the code.

The precision of Technical debt
estimations is directly linked to the
care taken to define and validate the
remediation functions.

Table 1 gives examples of
requirements and associated
remediation functions.

Once we have defined the Quality
Model and remediation functions, the
calculation of the Technical Debt is
simple. We run the code through the
analysis tools and use remediation
functions to work out remediation
costs for each element in the scope of
the analysis. Technical Debt is the sum
of remediation costs for all non-
compliances. In the SQALE method
this debt is called SQALE Quality
Index (SQI).

If one has the right tools, it is easy
to monitor at every compilation or
release the amount of Technical Debt
of the code. We can also divide that
amount by the code size (expressed for
example in function points or
thousands lines of code) to obtain the
density of the analyzed code debt.
Debt densities are very useful to
compare teams or organizations.
However these figures are not
sufficient to analyze in detail the
nature of the debt. They do not tell you
where to begin reimbursement either.

ANALYSING THE DEBT

The SQALE method defines
additional indexes and indicators to
analyze and understand this debt. For
this, the method organizes and groups
requirements according to a specific
chronology.

 TABLE 1. Some requirement samples, their mapping within a SQALE Quality Model and their associated remediation function.

The SQALE method identifies
eight quality characteristics as shown
in Figure 1. Their choice and the order
in which they are organized have
already been explained (10). What you
should remember is that the testability
is the foundation upon which all other
characteristics rely. Testability is
chronologically the first characteristic
you need. For example, it will be very
difficult to make an untestable
component reliable.

We therefore need to associate
each requirement in the definition of
"right code" to a quality characteristic:
the one that would be impacted in the
case of a requirement violation. If a
requirement impacts more than one
characteristic, the method tells you to
associate it to the lowest characteristic
in the chronology. This allows to work
out a debt index for each quality
characteristic.

The method uses an indicator to
represent the specific distribution of
Technical Debt for each retained
characteristic. This SQALE indicator
called Pyramid (for which we give two
examples in Figure 2) can be read in
two ways:

• The first way is the analytic view
• The second way is the

consolidated view
As a concrete example, we will

look at the pyramid from project A in

Figure 2 and see all the information it
gives.

Let's start with the analytic view,
that is to say, the distribution of debt
by characteristic.

In the example shown, the debt
related to reliability is 18.2 days. If it
exceeds the objectives set, the graph
can identify and initiate training or
coaching on one or more topics that
are the cause of this debt (i.e.
exception handling, dangerous
"cast"...). These targeted actions
should contain the evolution of debt
and improve reliability of delivered
code.

The graph also tells us that
violations, for a total of 7.1 days, are
linked to code maintainability. Since
this concerns only maintainability by
third parties, which in our case is not
an immediate concern, we can ignore
this part of the debt and delay without
risk remediation of the related
violations.

Let's see now how to use the
consolidated view of the pyramid, that
is to say, when for a given
characteristic we add the debt of all
lower characteristic levels. This is
shown by numbers in the right
columns within Figure 2.

Take the example of the
consolidated changeability of Project
A which is 19.4 days.

Agile projects generate a large
number of change cycles to the code.
The necessary quality characteristics to
support these developments are
testability, reliability and
changeability. If the debt of the code
for these three characteristics is too
high, then developers will be slowed
down in their productivity. Their code
is not "agile" enough.

In Figure 2, the two projects have
comparable Technical Debts but
different distribution profiles. Project
A code is more “agile” than project B.

With a little experience, an
organization can establish the
threshold beyond which it is not
recommended to move the
maintenance of an application to agile
mode.

Finally, the pyramid also gives us
the order in which the remediation
must be done. If the debt is not very
high, or if there is enough time to
repay all the debt, the pyramid gives
the natural remediation order.

You should follow the Pyramid
chronology and start fixing testability
issues.

If you do not follow the order
suggested by the Pyramid, you could
waste time. You might correct
reliability problems or maintainability
within code portions that have a
testability debt and will need to be
refactored or deleted because they are
too complex or redundant and so lose
your previous work.

Overall, to summarize, the SQALE
Pyramid provides technical rationale
for decisions. It represents the
"technical perspective" of the debt.

OPTIMIZED PAY BACK

Unfortunately, in many cases, we
do not have enough time to repay the
entire debt, or even enough time to
bring it down to the acceptable limits
defined for the project. The SQALE
method defines a different perspective
and other indexes and indicators to
address this issue.
In the same way the method requires
that you associate a remediation
function, it also requires you to
associate a non-remediation function.
This is used to quantify all resulting
costs of the delivery of one or more

FIGURE 1. The organization of “right code“ requirements in a chronological order.

non-conformities. These include for
example:

• Cost to locate and fix a bug
resulting from the delivery of a
non-conformity. Possible income
losses incurred.

• Cost of additional maintenance
resources.

• Cost of additional resources
(CPU, memory) caused by a non-
compliance

In other words, the non-
remediation function estimates the
penalty that the Product Owner (or
someone who represents the Business)
may claim as compensation for
accepting violations. This will cover
all real or potential damage that could
result from non-quality.

If the compensation amount is less
than this, he should not accept
delivery.

As in practice it is difficult to
estimate and accurately model the full
financial consequences of a violation,

we can implement a simple but just as
powerful solution.

It is possible to classify the
requirements into categories such as
"blocking", "critical", "major" and
associate an identical symbolic cost or
penalty for each class. What is
important is that these amounts
represent the relative importance of
these different categories. Table 2
gives examples of such non-
remediation factors.

Because the non-remediation costs
are not established on an ordinal scale
but on a ratio scale, we have shown
(10) that we can aggregate the
measures by addition and comply with
the measurement theory and the
representation clause.

The SQALE method defines an
index that sums all the non-
remediation costs associated with a
given perimeter. This is the SBII
(SQALE Business Impact Index). This
index quantifies the business impact of

the findings made on the code. It
represents the business perspective of
non-quality.

Let's see how we use this
perspective and this index to optimize
the debt repayment.

We saw that when we had the
necessary budget, remediation order
was given directly by the SQALE
pyramid.

Now imagine that we are in the
case of project A shown in Figure 1.
Suppose the agreed limit in the
"Definition of Done" is 5 days. We can
see that 40.1 working days are needed
to return to target. Suppose that
unfortunately there are only 10
working days available before the
imposed delivery date. In this case, we
will have to compromise and make an
optimal use of these 10 days.

The remediation priority will be
established by taking into account the
business impact of non-conformities.
We will select priority actions giving
the highest return, that is to say, having
the best ratio Non-remediation cost /
remediation cost.

For this, SQALE defines the Debt
Map graph on which an item (either a
file, a component or an application) is
represented on two axes, the Technical
Debt and the Business Impact. An
example is given in Figure 4. We will
start with the top left quadrant and
select items with highest slope as far as
available budget (as shown by red
line).

DEPLOYING THE SQALE METHOD

As the SQALE method is open
source and royalty free, some
organizations have built their own
solution by loading results of different
analysis tools in a Business
Intelligence tool. But most
organizations use available SQALE

FIGURE 2. Samples of SQALE Pyramid. These 2 projects have a similar amount of
Technical Debt but different distribution profiles.

 TABLE 2. Sample of non-remediation factors.

compatible tools. When the perimeter
is small (less than 50 developers),
using the SQALE default settings from
the tools allows a very quick
implementation and immediate results.

When the perimeter is more
important (that is to say 100
developers and more), deployment
becomes a transverse project. We
helped 6 large organizations on such
projects and provide here a summary
of our findings and our
recommendations in this type of
context.

1°) Managers and upper
management understand and
appreciate the concept of Technical
Debt. They want to integrate this
information in their performance
indicators. But to do this, it is
necessary that all projects in the scope
use the same “right code” definition
and consistent remediation and non-
remediation functions. This should be
established independently of the
location and language used.

By facilitating workshops with
experts from different units, you can
achieve a general consensus on the
content of the definition of "right
code."

In our experience, we recommend
limiting the models to a number of
requirements between 50 and 100.
Similarly, it is important to involve
experts to identify the remediation
lifecycle and associated remediation
functions.

2°) Pay specific attention to the
process aspect. It is desirable to define

and communicate the implementation
and management process for Technical
Debt. This process will typically
answer questions such as:

• Who decides the Technical Debt
goals for new projects?

• Is a project allowed to remove or
add specific requirements in the
definition of “right code”?

• What are the Technical Debt
management rules for the legacy
code?

• What are the implications for
subcontracted projects?

3°) Test on a pilot before full
deployment. This helps to check and
validate the Quality models and, above
all, to calibrate the remediation and
non-remediation functions on
representative projects.

4°) Automate the production of the
debt indicators (if possible within the
continuous integration flow) and make
sure it is produced at least daily with
no additional workload for users.

5°) Allocate time for training and
coaching the different stakeholders in
Technical Debt and the SQALE
method according to their profile. As
an example:

• A one-day training for experts
participating in workshops

• A 45 minutes awareness session
for top managers.

6°) Organize an annual review and
maintenance of models.

When all these recommendations
are followed, the Technical Debt
becomes very visible. We found that it
creates virtuous effects among
developers. They start challenging

FIGURE 3. 2 sample Dashboards allowing the management of Technical Debt

FIGURE 4. A SQALE Debt Map sample. This graph provides remediation priority when the
remediation budget needs to be optimized.

their peers and other projects. This
triggers quick improvement in the
quality of the code produced.

CONCLUSION

As we have shown, the SQALE
method analyzes the nature and impact
of Technical Debt from two
perspectives, the technical perspective
(with the remediation costs and the
characteristic distribution) and the
business perspective (with non-
remediation costs).

Combining the two perspectives is
powerful and provides prioritization
logic. In fact, as shown in Figure 5,
this logic is similar to the one
recommended by the Agile
community. It uses the cost of
development and business value to
prioritize the implementation of user
stories.

With this enhancement, the new
version of the method covers the
weaknesses reported by some users.
Today, what the user community is
still expecting and will welcome is a
standardized definition of “right code”.

ACKNOWLEDGEMENTS

We thank the reviewers who
provided constructive comments and
suggestions for improving this article
and especially Paul Bricknell.

REFERENCES
[1] W. Cunningham, “The WyCash portfolio

management system”, ACM SIGPLAN
OOPS Messenger, vol. 4(2), pp. 29–30,
1993.

[2] M. Fowler, “Technical Debt Quadrant,
2009.
http://martinfowler.com/bliki/TechnicalDe
btQuadrant.html

[3] S. McConnell, “What is Technical Debt?
Two Basic Kinds”.
http://forums.construx.com/blogs/stevemc
c/archive/2007/11/01/technical-debt-
2.aspx

[4] I. Gat, “Technical Debt”, IT Journal, vol.
23, October 2010.

[5] C. Sterling, “Managing Software Debt”;
Addison-Wesley, 2010.

[6] . J. H. Hegeman, ‘On the Quality of
Quality Models”, Master thesis, University
of Twente, July 2011.

[7] Sonarsource, the Sonar company, SQALE
plugin overview.
http://www.sonarsource.com/plugins/plugi
n-sqale/overview/

[8] J.-L. Letouzey, The SQALE Method –
Definition Document, Version 1.0,
January 2012.
 http://www.sqale.org/

[9] N. Brown, M. Gonzalez, Ph. Kruchten, R.
Nord, I. Ozkaya, “Managing Structural
Technical Debt”, OOPSLA 2011,
Portland, 2011.

[10] J.-L. Letouzey, Th. Coq, “The SQALE
Analysis Model - An analysis model
compliant with the representation
condition for assessing the Quality of
Software Source Code”, VALID 2010,
Nice, August 2010.

FIGURE 5: Comparison between prioritization of remediation and prioritization of features.

