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Aim 

• Provide an overview about Technical Debt 

 

• Why? 
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Definitions 

• Technical debt is a metaphor. 

– Pros: widely applicable. 

– Cons: wrongly used. 
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Definitions 

• TD can be seen as the result of an 

optimization for the short term which leaded 

to long term handicaps.  

– Examples: low comments in code, high 

complexity 

• Technical Debt: 

– Can emerge organically as every system. Every 

system, while evolving, improves complexity. 

– Can be opportunistically chosen (“let’s release 

now, we’ll deal with it later on”). 
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My Vision 
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Definitions 

• TD consists of two important concepts: 

– Principal: the cost of eliminating the debt. 

– Interest: the penalty to be paid in the future if 

the debt is not eliminated. 

• E.g.: a high complex module could require 

significant effort to be refactored (principal), 

however, if not refactored, it could slow 

down development speed (interest). 
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TD vs. SW Quality 

• TD is not new. 

• SW quality includes TD. 

• TD is very close to Maintainability concept. 

• The concept of technical debt proved to be useful:  

– Large organizations (e.g., Cisco, Siemens, 

Lockheed Martin, etc.) have explicitly introduced 

it in some form or another in their software 

development process, as something to identify, 

value, and take into consideration while planning 

iterations and releases.  
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Lockheed Martin, etc.) have explicitly introduced 
it in some form or another in their software 
development process, as something to identify, 
value, and take into consideration while planning 
iterations and releases.  

 

9 



© 2013 Fraunhofer USA, Inc. 
 Center for Experimental Software Engineering 

Important considerations 

• Can expire 

• All projects have some TD 

• Not always good to remove 

• NOT just defects 

• NOT lack of process 

• NOT the new features not yet implemented 

• Depends on the future 

• Must be estimated (Can’t be measured) 

• Changes when changing goals 
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Use Cases 

• Principal quantification. 

• Interest quantification. 

• Prioritization of activities. 

• Support Intentional/Explicit trade-off between short-
term vs. long-term goals, e.g. refactoring or coding? 

• Effort allocation for a healthy project (e.g. 20% 
testing, 20% removing debt, e.g.) 

• Controlling evolution of TD during time within a 
project. 

• Suggesting the set of quality rules to fix for 
minimizing TD (given a time-to-market constraint). 
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Research directions 

• Metrics 

• Release planning 

• Empiricism 

• Decision-making  

• Estimation 
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Demo 

• Tool support: just a set of quality rules! 

 

• SonarQube (www.sonarqube.org) 

 

 

 

 

 

• Local vs http://nemo.sonarqube.org/ 
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Requirements of a useful tool 

• R1: Managing principal, interest, and time-to-

market.  

• R2: Translating decisions into economic 

consequences  

• R3: Managing uncertainty in a rigorous way 

• R4: Managing the evolution of economic 

consequences 

• R5: Balancing rigor and ease of use via 

scalability 
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Requirements of a useful tool 

• R6: Completeness and integration 

• R7: Balancing expert opinions and 

automated estimates 

• R8: What-if analysis as interpretation of 

possible distributions 

• R9: Sensitivity analysis 

• R10: Scenario analysis 
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Future steps 

• Principal quantification 

– A perfect system with no debt is unfeasible 

– Scenarios exist in which the debt of a (good) 
project exceeds its profit. Wrong message to both 
developers and managers. 

• Interest quantification: 

– Interest is not quantified in the same terms as the 
principal, so it is hard to trade off principal and 
interest. 

– Interest is not based on historical data.  

• More artifacts than just code. 
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