
© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

The Technical Debt Metaphor:

Principles, Strengths, Limits,

and Tool Support

Davide Falessi
University of Rome “Tor Vergata”
January 8, 2014

© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Agenda

• Aim

• Definitions and Vision

• Research directions

• Tool Support

• Requirements of a next generation tool

support

• References

2

© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Aim

• Provide an overview about Technical Debt

• Why?

3

© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Definitions

• Technical debt is a metaphor.

– Pros: widely applicable.

– Cons: wrongly used.

4

© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Definitions

• TD can be seen as the result of an

optimization for the short term which leaded

to long term handicaps.

– Examples: low comments in code, high

complexity

• Technical Debt:

– Can emerge organically as every system. Every

system, while evolving, improves complexity.

– Can be opportunistically chosen (“let’s release

now, we’ll deal with it later on”).

5

© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

My Vision

6

Company

ProjectsResources

Release

Task

TD removal Testing
Feature

Implementation

Goals

Aims

Trade-off

Aims

TD

Exists in

Depends on

Are assigned to

© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Definitions

• TD consists of two important concepts:

– Principal: the cost of eliminating the debt.

– Interest: the penalty to be paid in the future if

the debt is not eliminated.

• E.g.: a high complex module could require

significant effort to be refactored (principal),

however, if not refactored, it could slow

down development speed (interest).

7

© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

TD vs. SW Quality

• TD is not new.

• SW quality includes TD.

• TD is very close to Maintainability concept.

• The concept of technical debt proved to be useful:

– Large organizations (e.g., Cisco, Siemens,

Lockheed Martin, etc.) have explicitly introduced

it in some form or another in their software

development process, as something to identify,

value, and take into consideration while planning

iterations and releases.

8

© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

TD vs. SW Quality

• TD is not new.

• SW quality includes TD

• TD is very close to Maintainability concept.

• The concept of technical debt proved to be
useful:

– Large organizations (e.g., Cisco, Siemens,
Lockheed Martin, etc.) have explicitly introduced
it in some form or another in their software
development process, as something to identify,
value, and take into consideration while planning
iterations and releases.

9

© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Important considerations

• Can expire

• All projects have some TD

• Not always good to remove

• NOT just defects

• NOT lack of process

• NOT the new features not yet implemented

• Depends on the future

• Must be estimated (Can’t be measured)

• Changes when changing goals

10

© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Use Cases

• Principal quantification.

• Interest quantification.

• Prioritization of activities.

• Support Intentional/Explicit trade-off between short-
term vs. long-term goals, e.g. refactoring or coding?

• Effort allocation for a healthy project (e.g. 20%
testing, 20% removing debt, e.g.)

• Controlling evolution of TD during time within a
project.

• Suggesting the set of quality rules to fix for
minimizing TD (given a time-to-market constraint).

11

© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Research directions

• Metrics

• Release planning

• Empiricism

• Decision-making

• Estimation

12

© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Demo

• Tool support: just a set of quality rules!

• SonarQube (www.sonarqube.org)

• Local vs http://nemo.sonarqube.org/

13

http://www.sonarqube.org/
http://nemo.sonarqube.org/
http://nemo.sonarqube.org/

© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Requirements of a useful tool

• R1: Managing principal, interest, and time-to-

market.

• R2: Translating decisions into economic

consequences

• R3: Managing uncertainty in a rigorous way

• R4: Managing the evolution of economic

consequences

• R5: Balancing rigor and ease of use via

scalability

14

© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Requirements of a useful tool

• R6: Completeness and integration

• R7: Balancing expert opinions and

automated estimates

• R8: What-if analysis as interpretation of

possible distributions

• R9: Sensitivity analysis

• R10: Scenario analysis

15

© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Future steps

• Principal quantification

– A perfect system with no debt is unfeasible

– Scenarios exist in which the debt of a (good)
project exceeds its profit. Wrong message to both
developers and managers.

• Interest quantification:

– Interest is not quantified in the same terms as the
principal, so it is hard to trade off principal and
interest.

– Interest is not based on historical data.

• More artifacts than just code.

16

© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

References

• P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi, “Technical
debt: towards a crisper definition report on the 4th
international workshop on managing technical debt.” ACM
SIGSOFT Software Engineering Notes, Vol. 38, Is. 5 Pages:
51-54.

• D. Falessi, M. Shaw, F. Shull, K. Mullen, M. Stein, “Practical
Considerations, Challenges, and Requirements of Tool-
Support for Managing Technical Debt”, 4th International
Workshop on Managing Technical Debt (MTD 2013), co-
located with ICSE, San Francisco, USA, 2013.

• F. Shull, D. Falessi, C. Seaman, M. Diep, L. Layman,
“Technical Debt: Showing the Way for Better Transfer of
Empirical Results”, Perspectives on the Future of Software
Engineering, pp 179-190, 2013.

17

© 2013 Fraunhofer USA, Inc.
 Center for Experimental Software Engineering

Contact Information

Davide Falessi

dfalessi@fc-md.umd.edu

240-487-2928

18

