
Subsystem Design

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 1

Subsystem Design

FROM Dr. Giuseppe Calavaro, Ratiolal®
TO Students in the DISP, University of Roma “Tor Vergata”
2003

Objectives: Subsystem Design

� Understand the purpose of Subsystem
Design and where in the lifecycle it is
performed
� Define the behaviors specified in the

subsystem's interfaces in terms of
collaborations of contained classes

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 2

collaborations of contained classes
� Document the internal structure of the

subsystem
� Determine the dependencies upon

elements external to the subsystem

Subsystem Design in Context

Architect

Architectural
Analysis

Architecture
Reviewer

Review the
Architecture

Architectural
Design

Describe
Concurrency

Describe
Distribution

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 3

Designer

Review the
Design

Use-Case
Analysis

Class
Design

Subsystem Design

Use-Case
Design

Design
Reviewer

Subsystem Design Overview

Design Subsystems and Interfaces
Design Subsystems and Interfaces

(updated)

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 4

Subsystem
Design

Use-Case Realization Use-Case Realization
(updated)

Design ClassesDesign
Guidelines

� A “cross between” a package and a class
� Realizes one or more interfaces which

define its behavior

<<interface>>

Review: Subsystems and Interfaces

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 5

<<subsystem>>
Subsystem Name

Interface Subsystem

<<subsystem>>
Subsystem Name

Interface

Realization (Canonical form)

Realization (Elided form)

<<interface>>
Interface

A
<<subsystem>>

<<subsystem>>

Subsystem Guidelines

� Goals
� Loose coupling
� Portability, plug-and-play compatibility
� Insulation from change
� Independent evolution

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 6

Key is abstraction and encapsulation

B
<<subsystem>>

C
<<subsystem>>

� Independent evolution

� Strong Suggestions
� Don’t expose details, only interfaces
� Only depend on other interfaces

Review: Modeling Convention for Subsystems and Interfaces

CourseCatalogSystem
<<subsystem>>

ICourseCatalogSystem

<<subsystem>> package

<<subsystem proxy>> class

The <<subsystem>> package provides a container for the elements
that comprise the subsystem, the interaction diagrams that describe
how the subsystem elements collaborate to implement the operations
of the interfaces the subsystem realizes, and other diagrams that
clarify the subsystem elements.

The <<subsystem proxy>> class actually realizes the interface and will
orchestrate the implementation of the subsystem interface operations.

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 7

ICourseCatalogSystem

CourseCatalogSystem
<<subsystem proxy>>

CourseCatalogSystem
<<subsystem>>Interfaces start with an “I”

<<subsystem proxy>> class

Subsystem Design Steps

� Distribute Subsystem behavior to
Subsystem Elements
� Document Subsystem Elements
� Describe Subsystem Dependencies
� Checkpoints

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 8

� Checkpoints

Subsystem Design Steps

� Distribute Subsystem behavior to
Subsystem Elements
� Document Subsystem Elements
� Describe Subsystem Dependencies
� Checkpoints

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 9

� Checkpoints

Subsystem Responsibilities

� Subsystem responsibilities defined by
interface operations
� Interface operations may be realized by
� Internal class operations
� Internal subsystem operations

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 10

CourseCatalogSystem
<<subsystem>>ICourseCatalogSystem

getCourseOfferings()

<<interface>>

subsystem responsibility

Distributing Subsystem Responsibilities

� Identify new, or reuse existing, design elements (e.g.,
classes and/or subsystems)

� Allocate subsystem responsibilities to design elements
� Incorporate applicable mechanisms (e.g., persistence,

distribution, etc.)
� Document design element collaborations in “interface

realizations”

Be careful to avoid having effectively the same class in two different
subsystems.
Existence of such a class implies that the subsystem boundaries may
not be well-drawn.

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 11

realizations”
� One or more interaction diagrams per interface

operation
� Class diagram(s) containing the required design

element relationships
� Revisit Architectural Design

� Adjust subsystem boundaries and/or dependencies,
as needed

Diagram are owned by the subsystem, and are used to design the internal
behavior of the subsystem. The diagrams are essential for subsystems with
complex internal designs. It also enables the subsystem behavior to be easily
understood, hopefully rendering it reusable across contexts.

These internal interaction diagrams should incorporate any
applicable mechanisms initially identified in Architectural Design
(e.g., persistence, distribution, etc.)

Modeling Convention: Subsystem Interaction Diagrams

Subsystem Client Subsystem Proxy Design Element 1

performResponsibility()

Op1()

subsystem responsibility
Op2()

Design Element 2

Internal subsystem

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 12

Op3()

Op4()

Internal subsystem
interactions

Subsystem interface not shown

Example: CourseCatalogSystem Subsystem In Context
subsystem interface

: Student

: RegisterFor
CoursesForm

: Registration
Controller

: Schedule : Student: ICourseCatalog
System

A list of the available

Student wishes to
create a new
schedule

1: // create schedule()

4: // display course offerings()

2: // get course offerings()

3: getCourseOfferings(Semester)

subsystem responsibility

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 13

A list of the available
course offerings for this
semester are displayed

9: // add schedule(Schedule)

5: // display blank schedule()

At this, point the Submit Schedule subflow is executed.

6: // select 4 primary and 2 alternate offerings()

7: // create schedule with offerings()
8: // create with offerings()

A blank schedule
is displayed for the
students to select
offerings

subsystem responsibility

Legacy RDBMS Database Access

Analysis Class Analysis Mechanism(s)

Student Persistency, Security

Incorporating the Architectural Mechanisms: Persistency

� Analysis-Class-to-Architectural-Mechanism
Map from Use-Case Analysis

Schedule Persistency, Security

OODBMS
Persistency

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 14

CourseOffering

Course

RegistrationController

Persistency, Legacy Interface

Persistency, Legacy Interface

Distribution

Schedule Persistency, Security

OODBMS Persistency was
discussed in Use-Case Design

RDBMS
Persistency

� Provide access to the class libraries needed to
implement JDBC
� Provide java.sql package

� Create the necessary DBClasses
� One DBClass per persistent class
� Course Offering persistent class =>

Review: Incorporating JDBC: Steps

√√√√

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 15

� Course Offering persistent class =>
DBCourseOffering

(continued)

� Incorporate DBClasses into the design
� Allocate to package/layer

• DBCourseOffering placed in
CourseCatalogSystem subsystem

� Add relationships from persistency clients
• Persistency clients are the

Review: Incorporating JDBC: Steps (contd.)

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 16

• Persistency clients are the
CourseCatalogSystem subsystem clients

� Create/Update interaction diagrams that describe:
� Database initialization
� Persistent class access: Create, Read, Update,

Delete

Example: Local CourseCatalogSystem Subsystem Interaction

Subsystem Proxy

RDBMS

Retrieve all available course
offerings for the current
semester

CourseCatalog
System Client

:
CourseCatalogSystem

:
DBCourseOfferring

:
CourseOffering

:
CourseOfferingList

: ResultSet: Course Catalog: Statement: Connection

1. getCourseOfferings(Semester)

1.1. read(string)

1.1.1. createStatement()

1.1.2. executeQuery(String)
sql statement is passed in
specifying the search criteria --
course offerings in the current
semester Create a list to hold all

retrieved course offerings
1.1.2.1. // executeQuery()

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 17

RDBMS
Read

1.1.4. new()

Repeat these operations for each
element returned from the
executeQuery() command.

The CourseOfferingList is loaded
with the data retrieved from the
database.

The getData and setData
operations are called for each
attribute in the each retrieved
class instance.

3. setData()

retrieved course offerings

Add the retrieved course offering
to the list to be returned

2. getString()

1.1.3. new()

4. add(CourseOffering)

Example: Billing System Subsystem In Context

: Registrar :
CloseRegistrationForm

:
CourseOffering

: Schedule : Student. :
IBillingSystem

:
ICourseCatalogSystem

:
CloseRegistrationController

Close
registration for
each course
offering

Retrieve a list of course
offerings for the current
semester

If the maximum number of
selected primary courses have
not been committed, select
alternate course offerings).

Repeat twice this is
for simplicity;
realistically, an
indefinite number of

1. // close registration()

2. // close registration()

2.2. // close registration()

1.1. // is registration open?()

2.1. getCourseOfferings(Semester)

subsystem interface

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 18

Send student and tuition to
the Billing System, which will
do the actual billing to the
student for the schedule.

alternate course offerings).

Currently assuming tuition based on
number of offerings taken and certain
attributes of students. If different offerings
get different prices this will change slightly.

indefinite number of
iterations could
occur)

Finally commit or
cancel the course
offering once all
leveling has occurred

2.6. submitBill(Student, double)

2.3. // level()

2.4. // close()

2.5. getTuition()

subsystem responsibility

Example: Local BillingSystem Subsystem Interaction

Billing System
Client

:
BillingSystem

:
StudentBillingTransaction

:
BillingSystemInterface

: Billing System
: Student.

1. submitBill(Student, double)

1.1. create(Student, double)

1.1.1. // get contact info()

Retrieve the
information that must
be included on the bill

Subsystem Proxy

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 19

1.2. submit(StudentBillingTransaction)

1.2.1. // open connection()

1.2.2. // process transaction()

1.2.3. // close connection()

Subsystem Design Steps

� Distribute Subsystem behavior to
Subsystem Elements
� Document Subsystem Elements
� Describe Subsystem Dependencies
� Checkpoints

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 20

� Checkpoints

Example: CourseCatalogSystem Subsystem Elements

Subsystem Proxy
Subsystem Interface

DBCourseOfferring

create() : CourseOffering
read(searchCriteria : string) : CourseOfferingList

CourseCatalogSystem

getCourseOfferings(forSemester : Semester) : CourseOfferingList

<<subsystem proxy>>
ICourseCatalogSystem

getCourseOfferings(forSemester : Semester) : CourseOfferingList

(from External System Interfaces)

<<Interface>>

CourseOfferingList
(from University Artifacts)

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 21

Statement

executeQuery()
executeUpdate()

(from java.sql)

Connection

createStatement()

(from java.sql)

1

1
new()
add()

CourseOffering

new()
setData()

(from University Artifacts)

<<entity>>

1

0..*

ResultSet

getString()

(from java.sql)

Example: Billing System Subsystem Elements

StudentBillingTransaction

create(forStudent : Student, forAmount : double)

Student.
<<entity>><<subsystem proxy>>

IBillingSystem

submitBill(forStudent : Student, forTuition : double)

(from External System Interfaces)

<<Interface>>

Subsystem Interface

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 22

Student.

// get contact info()

(from University Artifacts)
BillingSystem

submitBill(forStudent : Student, forTuition : double)

<<subsystem proxy>>

BillingSystemInterface

submit(theTransaction : StudentBillingTransaction)

0..1

1

0..1

1

Subsystem Proxy

Subsystem Design Steps

� Distribute Subsystem behavior to
Subsystem Elements
� Document Subsystem Elements
� Describe Subsystem Dependencies
� Checkpoints

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 23

� Checkpoints

Flexible

Describing Subsystem Dependencies

� Subsystem dependency on a subsystem

� Subsystem dependency on a package

Server

Client Support
<<subsystem>>

Server Support
<<subsystem>>

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 24

� Subsystem dependency on a package

Use with care
Client Support

<<subsystem>> Supporting
Types

Example: CourseCatalogSystem Subsystem Dependencies

CourseCatalogSystem

(from Business Services)

<<subsystem>>

External System
Interfaces

(from Business Services)

Access to the subsystem
interface itself
(ICourseCatalogSystem).

MEMO

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 25

java.sql

(from Middleware)

University Artifacts

(from Business Services)
Access the core types of
the Course Registration
System

Access the DBMS

MEMO
A subsystem cannot be reused without the

packages it depends on

Example: BillingSystem Subsystem Dependencies

BillingSystem
(from Business Services)

<<subsystem>>

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 26

External System
Interfaces

(from Business Services)

University Artifacts
(from Business Services)

Subsystem Design Steps

� Distribute Subsystem behavior to
Subsystem Elements
� Document Subsystem Elements
� Describe Subsystem Dependencies
� Checkpoints

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 27

� Checkpoints

Checkpoints: Design Subsystems

� Is a realization association defined for each
interface offered by the subsystem?
� Is a dependency association defined for each

interface used by the subsystem?
� Ensure that none of the elements within the

subsystem have public visibility.

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 28

subsystem have public visibility.
� Is each operation on an interface realized by

the subsystem documented in a interaction
diagram? If not, is the operation realized by a
single class, so that it is easy to see that
there is a simple 1:1 mapping between the
class operation and the interface operation?

Review: Subsystem Design

�What is the purpose of Subsystem Design?
� How many interaction diagrams should be

produced during Subsystem Design?
�Why should dependencies on a subsystem

be on the subsystem interface?

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 29

Exercise: Subsystem Design

� Given the following:
� The defined subsystems, their interfaces and

their relationships with other design elements
(the subsystem context diagrams)

� Patterns of use for the architectural
mechanisms

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 30

(continued)

mechanisms

Exercise: Subsystem Design (cont.)

� Identify the following for a particular
subsystem(s):
� The design elements contained within the

subsystem and their relationships
� The applicable architectural mechanisms
� The interactions needed to implement the

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 31

(continued)

� The interactions needed to implement the
subsystem interface operations

Exercise: Subsystem Design (cont.)

� Produce the following diagrams for a
particular subsystem(s):
� “Interface realizations”

• Interaction diagram for each interface
operation

OOAD Using the UML - Architectural Design, v 4.2
Copyright 1998-1999 Rational Software, all rights reserved 32

• Class diagram containing the subsystem
design elements that realize the interface
responsibilities and their relationships

� Class diagram that shows the subsystem and
any dependencies on external packag(es)
and/or subsystem(s) (subsystem dependencies
class diagram)

