
Use Case Design

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 1

Use Case Design

FROM Dr. Giuseppe Calavaro, Ratiolal®
TO Students in the DISP, University of Roma “Tor Vergata”
2003

Objectives: Use-Case Design

� Understand the purpose of Use-Case
Design and where in the lifecycle it is
performed
� Verify that there is consistency in the use-

case implementation
� Refine the use-case realizations from Use-

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 2

� Refine the use-case realizations from Use-
Case Analysis using defined design model
elements

Use-Case Design in Context

Architect

Architectural
Analysis

Architecture
Reviewer

Review the
Architecture

Architectural
Design

Describe
Concurrency

Describe
Distribution

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 3

Designer

Review the
Design

Use-Case
Analysis

Class
Design

Subsystem Design

Use-Case
Design

Design
Reviewer

Use-Case Design Overview

Supplementary
Specifications

Design Subsystems and Interfaces

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 4

Use-Case
Design

Use-Case Realization Use-Case Realization

Design Classes
Use Case

Use-Case Design Steps

� Describe Interactions Between Design
Objects
� Simplify Interaction Diagrams Using

Subsystems (optional)
� Describe Persistence-Related Behavior
� Refine the Flow of Events Description

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 5

� Refine the Flow of Events Description
� Unify Classes and Subsystems
� Checkpoints

Review: Use-Case Realization

Use-Case Model Design Model

Use Case Use-Case Realization

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 6

Class Diagrams

Sequence Diagrams

Use Case

Collaboration Diagrams

Use-Case Design Steps

� Describe Interactions Between Design
Objects
� Simplify Interaction Diagrams Using

Subsystems (optional)
� Describe Persistence-Related Behavior
� Refine the Flow of Events Description

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 7

� Refine the Flow of Events Description
� Unify Classes and Subsystems
� Checkpoints

Use-Case Realization Refinement

� Identify participating objects
� Allocate responsibilities amongst objects
� Model messages between objects
� Describe processing resulting from

messages

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 8

Sequence Diagrams Class Diagrams

messages
� Model associated class relationships

Use-Case Realization Refinement Steps

� Replace applicable classes with the
associated subsystem interfaces

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 9

� Incrementally incorporate applicable
architectural mechanisms
� Update use-case realization
� Interaction diagrams
� View of participating classes (VOPC) class

diagram(s)

BillingSystem

// submit bill()

<<boundary>>

BillingSystem
<<subsystem>>

IBillingSystem

Analysis Classes Design Elements

Example: Incorporating Subsystem Interfaces

submitBill(forTuition : Double, forStudent : Student)

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 10

All other analysis classes mapped directly to design classes

CourseCatalogSystem

// get course offerings()

<<boundary>>

CourseCatalogSystem
<<subsystem>>

ICourseCatalogSystem

getCourseOfferings(forSemester : Semester) : CourseOfferingList

submitBill(forTuition : Double, forStudent : Student)

Example: Incorporating Subsystem Interfaces (Before)
Replace with subsystem interface

: Student
: RegisterForCoursesForm : RegistrationController : Schedule : Student: CourseCatalogSystem

A list of the available
course offerings for this
semester are displayed

Student wishes to
create a new
schedule

1. // create schedule()

1.2. // display course offerings()

1.1. // get course offerings()

1.1.1. // get course offerings(forSemester)

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 11

semester are displayed

1.3. // display blank schedule()

2. // select 4 primary and 2 alternate offerings()

2.1. // create schedule with offerings()
2.1.1. // create with offerings()

A blank schedule
is displayed for the
students to select
offerings

2.1.2. // add schedule(Schedule)

At this point, the Submit Schedule subflow is executed

Example: Incorporating Subsystem Interfaces (After)

: Student

: RegisterFor
CoursesForm

: Registration
Controller

: Schedule : Student: ICourseCatalog
System

A list of the available

Student wishes to
create a new
schedule

1: // create schedule()

1.2: // display course offerings()

1.1: // get course offerings()

1.1.1: getCourseOfferings(Semester)

Replaced with subsystem interface

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 12

A list of the available
course offerings for this
semester are displayed

2.1.2: // add schedule(Schedule)

1.3: // display blank schedule()

At this, point the Submit Schedule subflow is executed.

2: // select 4 primary and 2 alternate offerings()

2.1: // create schedule with offerings()
2.1.1: // create with offerings()

A blank schedule
is displayed for the
students to select
offerings

Example: Incorporating Subsystem Interfaces (VOPC)

ICourseCatalogSystem

getCourseOfferings()
initialize()

(from External System Interfaces)

<<Interface>>

RegisterForCoursesForm

// submit schedule()
// display course offerings()
// display schedule()
// save schedule()
// create schedule()
// select 4 primary and 2 alternate offerings()
// display blank schedule()

(from Registration)

<<boundary>>

<<entity>>

RegistrationController

// submit schedule()
// save schedule()
// create schedule with offerings()
// getCourseOfferings()

(from Registration)

<<control>>

0..1

0..1registrant

1 1
Schedule

semester

// submit()
// save()
// any conflicts?()
// new()

(from University Artifacts)

<<entity>>

0..*

0..1

0..1

currentSchedule

0..*
1

Subsystem interface

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 13

Student.

- name
- address
- studentID : int

// addSchedule()
// getSchedule()
// hasPrerequisites()
// passed()

(from University Artifacts)

<<entity>> // new()

1

CourseOffering

number
startTime
endTime
days

// addStudent()
// removeStudent()
// new()
// setData()

(from University Artifacts)

<<entity>>

0..*

0..4
primaryCourses

0..*

0..2

alternateCourses

Analysis Class Analysis Mechanism(s)

Student Persistency, Security

Incorporating Architectural Mechanisms: Security

� Analysis-Class-to-Architectural-Mechanism
Map from Use-Case Analysis

Schedule Persistency, Security

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 14

CourseOffering

Course

RegistrationController

Persistency, Legacy Interface

Persistency, Legacy Interface

Distribution

Schedule Persistency, Security

Details in Appendix

The details of incorporating the security mechanism are provided in the
Additional Information Appendix in the Security Mechanism section.

Analysis Class Analysis Mechanism(s)

Student Persistency, Security

Incorporating Architectural Mechanisms: Distribution

� Analysis-Class-to-Architectural-Mechanism
Map from Use-Case Analysis

Schedule Persistency, Security

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 15

CourseOffering

Course

RegistrationController

Persistency, Legacy Interface

Persistency, Legacy Interface

Distribution

Schedule Persistency, Security

Details in Appendix

The details of incorporating the distribution (RMI) mechanism are provided
in the Additional Information Appendix in the RMI Mechanism section.

Use-Case Design Steps

� Describe Interactions Between Design
Objects
� Simplify Interaction Diagrams Using

Subsystems (optional)
� Describe Persistence-Related Behavior
� Refine the Flow of Events Description

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 16

� Refine the Flow of Events Description
� Unify Classes and Subsystems
� Checkpoints

Encapsulating Subsystem Interactions

� Interactions can be described at several
levels
� Subsystem interactions can be described in

their own interaction diagrams

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 17

Raises the level of abstraction

When to Encapsulate Sub-Flows in a Subsystem

� Sub-flow occurs in multiple use-case
realizations
� Sub-flow has reuse potential
� Sub-flow is complex and easily

encapsulated
� Sub-flow is responsibility of one

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 18

� Sub-flow is responsibility of one
person/team
� Sub-flow produces a well-defined result
� Sub-flow is encapsulated within a single

Implementation Model component

Guidelines: Encapsulating Subsystem Interactions

� Subsystems should be represented by their
interfaces on interaction diagrams
� Messages to subsystems are modeled as

messages to the subsystem interface
� Messages to subsystems correspond to

operations of the subsystem interface

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 19

<<subsystem>>
MySubsystemInterfaceA

op1()
Op1()

:InterfaceA

operations of the subsystem interface
� Interactions within subsystems modeled in

Subsystem Design

Advantages of Encapsulating Subsystem Interactions

� Use-case realizations are less cluttered
� Use-case realizations can be created

before the internal designs of subsystems
are created (parallel development)
� Use-case realizations are more generic and

easy to change (subsystems can be

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 20

easy to change (subsystems can be
substituted)

Parallel Subsystem Development

� Concentrate on requirements that affect
subsystem interfaces
� Outline required interfaces
� Model messages that cross subsystem

boundaries
� Draw interaction diagrams in terms of

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 21

Use subsystem interfaces as synchronization points

� Draw interaction diagrams in terms of
subsystem interfaces for each use case
� Refine the interfaces needed to provide

messages
� Develop each subsystem in parallel

Use-Case Design Steps

� Describe Interactions Between Design
Objects
� Simplify Interaction Diagrams Using

Subsystems (optional)
� Describe Persistence-Related Behavior
� Refine the Flow of Events Description

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 22

� Refine the Flow of Events Description
� Unify Classes and Subsystems
� Checkpoints

Use-Case Design Steps: Describe Persistence-related Behavior

� Describe Persistence-related Behavior
� Modeling Transactions
� Writing Persistent Objects
� Reading Persistent Objects
� Deleting Persistent Objects

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 23

� Deleting Persistent Objects

Modeling Transactions

�What is a Transaction?
� Atomic operation invocations
� “All or nothing”
� Provide consistency

� Modeling Options

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 24

� Modeling Options
� Textually (scripts)
� Explicit messages

� Error conditions
� May require separate interaction diagrams
� Rollback
� Failure modes

Analysis Class Analysis Mechanism(s)

Student Persistency, Security

Incorporating the Architectural Mechanisms: Persistency

� Analysis-Class-to-Architectural-Mechanism
Map from Use-Case Analysis

Schedule Persistency, Security

OODBMS
Persistency

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 25

CourseOffering

Course

RegistrationController

Persistency, Legacy Interface

Persistency, Legacy Interface

Distribution

Schedule Persistency, Security

Legacy Persistency (RDBMS)
deferred to Subsystem Design

RDBMS
Persistency

Details in Appendix

Use-Case Design Steps

� Describe Interactions Between Design
Objects
� Simplify Interaction Diagrams Using

Subsystems (optional)
� Describe Persistence-Related Behavior
� Refine the Flow of Events Description

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 26

� Refine the Flow of Events Description
� Unify Classes and Subsystems
� Checkpoints

Detailed Flow of Events Description Options

� Annotate the interaction diagrams

: Actor1
: ClassA : ClassB

1: Do Something
Scripts can be used to

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 27

2: Do Something Moredescribe the details
surrounding these
messages.

Notes can include
more information
about a particular
diagram element

Script

Note

Use-Case Design Steps

� Describe Interactions Between Design
Objects
� Simplify Interaction Diagrams Using

Subsystems (optional)
� Describe Persistence-Related Behavior
� Refine the Flow of Events Description

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 28

� Refine the Flow of Events Description
� Unify Classes and Subsystems
� Checkpoints

Design Model Unification Considerations

� Model element names should describe their
function
� Merge similar model elements
� Use inheritance to abstract model elements
� Keep model elements and flows of events

consistent

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 29

� Keep model elements and flows of events
consistent

Use-Case Design Steps

� Describe Interactions Between Design
Objects
� Simplify Interaction Diagrams Using

Subsystems (optional)
� Describe Persistence-Related Behavior
� Refine the Flow of Events Description

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 30

� Refine the Flow of Events Description
� Unify Classes and Subsystems
� Checkpoints

Checkpoints: Design Model

� Is package/subsystem partitioning logical and
consistent?
� Are the names of the packages/subsystems

descriptive?
� Do the public package classes and subsystem

interfaces provide a single, logically consistent set of
services?

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 31

services?
� Do the package/subsystem dependencies correspond to

the relationships between the contained classes?
� Do the classes contained in a package belong there

according to the criteria for the package division?
� Are there classes or collaborations of classes which can

be separated into an independent package/subsystem?
� Is the ratio between the number of

packages/subsystems and the number of classes
appropriate?

Checkpoints: Use-Case Realizations

� Have all the main and/or sub-flows for this
iteration been handled?
� Has all behavior been distributed among

the participating design elements?
� Has behavior been distributed to the right

design elements?

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 32

design elements?
� If there are several interaction diagrams for

the use-case realization, is it easy to
understand which collaboration diagrams
relate to which flow of events?

Review: Use-Case Design

�What is the purpose of Use-Case Design?
�What is meant by encapsulating subsystem

interactions? Why is it a good thing to do?

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 33

Exercise: Use-Case Design, Part 1

� Given the following:
� Analysis use-case realizations (VOPCs and

interaction diagrams)
� The analysis-class-to-design-element map
� The analysis-class-to-analysis-mechanism

map

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 34

(continued)

map
� Analysis-to-design-mechanism map
� Patterns of use for the architectural

mechanisms

Exercise: Use-Case Design, Part 1 (cont.)

� Identify the following for a particular use
case:
� The design elements that replaced the analysis

classes in the analysis use-case realizations
� The architectural mechanisms that affect the

use-case realizations

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 35

(continued)

use-case realizations
� The design element collaborations needed to

implement the use case
� The relationships between the design elements

needed to support the collaborations

Exercise: Use-Case Design, Part 1 (cont.)

� Produce the following for a particular use
case:
� Design use-case realization

• Interaction diagram(s) per use-case flow of
events that describes the DESIGN
ELEMENT collaborations required to

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 36

ELEMENT collaborations required to
implement the use case

• Class diagram (VOPC) that includes the
DESIGN ELEMENTS that must collaborate
to perform the use case, and their
relationships

Exercise: Use-Case Design, Part 2 (optional)

� Given the following:
� The architectural layers, their packages, and

their dependencies
� All design use-case realization VOPCs (design

elements, their packages, and their
relationships)

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 37

(continued)

relationships)

Exercise: Use-Case Design, Part 2 (optional) (cont.)

� Identify the following:
� Any updates to the package relationships

needed to support the class relationships

� Produce the following diagrams:
� Refined class diagram that contains all

packages and their dependencies (organized

OOAD Using the UML - Architectural Design, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 38

packages and their dependencies (organized
by layer)

