
Factory Patterns

1

Basis of Factory Patterns

2

Procedural Solution

The problem here is that once we add a new

concrete product call we should modify the

Factory class. It is not very flexible and it violates

open close principle.

Of course we can subclass the factory class, but

let's not forget that the factory class is usually

used as a singleton. Subclassing it means

replacing all the factory class references

everywhere through the code.
3

Procedural Solution

The problem here is that once we add a new

concrete product call we should modify the

Factory class. It is not very flexible and it violates

open close principle.

Of course we can subclass the factory class, but

let's not forget that the factory class is usually

used as a singleton. Subclassing it means

replacing all the factory class references

everywhere through the code.
4

Procedural Solution

The problem here is that once we add a new

concrete product call we should modify the

Factory class. It is not very flexible and it violates

open close principle.

Of course we can subclass the factory class, but

let's not forget that the factory class is usually

used as a singleton. Subclassing it means

replacing all the factory class references

everywhere through the code.
5

Class Registration Solution

We want to have a reduced coupling between the factory and

concrete products.

Since the factory should be unaware of products we have to use

reflection or move the creation of objects outside of the factory

to an object aware of the concrete products classes. That would to an object aware of the concrete products classes. That would

be the concrete class itself.

In the later, a new abstract method is added in the product

abstract class. Each concrete class will implement this method to

create a new object of the same type as itself. We also have to

change the registration method such that we'll register concrete

product objects instead of Class objects.

6

Class Registration Solution

Abstract Product

abstract class Product

{{

public abstract Product createProduct();

...

}

7

Class Registration Solution

Product Factory

class ProductFactory

{

private HashMap m_RegisteredProducts = new HashMap();

public void registerProduct(String productID, Product p) {

m_RegisteredProducts.put(productID, p);m_RegisteredProducts.put(productID, p);

}

public Product createProduct(String productID){

((Product)m_RegisteredProducts.get(productID)).createProduct();

}

//Otherwise use reflection

}

8

Class Registration Solution

Real Product

class Product1 extends Product {

// ...

static

{

ProductFactory.instance().registerProduct("ID1", new Product1());ProductFactory.instance().registerProduct("ID1", new Product1());

}

public Product1 createProduct()

{

return new Product1();

}

...

}

9

Factory Method
The most intuitive solution to avoid modifying the Factory

class is to implement an interface

… or extend it: 10

Factory Method

There are some drawbacks over the class registration implementation and not so many advantages:

+ The derived factory method can be changed to perform additional operations when the objects are

created (maybe some initialization based on some global parameters ...).

- The factory cannot be used as a singleton.

- Each factory has to be initialized before using it.

- More difficult to implement.

- If a new object has to be added a new factory has to be created.
11

Factory Method Example

12

public Document CreateDocument(String
type){

if (type.isEqual("html"))
return new HtmlDocument();

if (type.isEqual("proprietary"))
return new MyDocument();

if (type.isEqual("pdf"))
return new PdfDocument ();

Factory Method Drawbacks and Benefits

• + The main reason for which the factory pattern is used is that it

introduces a separation between the application and a family of

classes (it introduces weak coupling instead of tight coupling hiding

concrete classes from the application). It provides a simple way of

extending the family of products with minor changes in application

code.code.

• + It provides customization hooks. When the objects are created

directly inside the class it's hard to replace them by objects which

extend their functionality. If a factory is used instead to create a

family of objects the customized objects can easily replace the

original objects, configuring the factory to create them.

• - The factory has to be used for a family of objects. If the classes

doesn't extend common base class or interface they can not be

used in a factory design template.

13

Abstract Factory

Abstract Factory offers the interface for

creating a family of related objects,

without explicitly specifying their classes.

14

Abstract Factory

1. The fact that the factory returns an abstract pointer

to the created object means that the client doesn't

have knowledge of the object's type. This implies

that there is no need for including any class that there is no need for including any class

declarations relating to the concrete type, the client

dealing at all times with the abstract type. The

objects of the concrete type, created by the factory,

are accessed by the client only through the abstract

interface.

15

Abstract Factory

2. The second implication of this way of creating

objects is that when the adding new concrete types

is needed, all we have to do is modify the client

code and make it use a different factory, which is far code and make it use a different factory, which is far

easier than instantiating a new type, which requires

changing the code wherever a new object is created.

16

Abstract Factory Example

17

