Factory Patterns

Basis of Factory Patterns

Procedural Solution

LISES
Client
ask for a new olject
=< interface ==
Product
&

i

| cleates Factory
Concrete Product (<

+create Produdproduct D:int): Product IN

Procedural Solution

ask for a new olject

Factory

LSES
Client
=< jnterface ==
Product
A

I

i creates
Concrete Product &

+create Produdproduct D:int): Product I

[
public Praduct createProduct{String ProductiD)

if (icl==ID1)
retum new OneProdud);
if (id==1D2)

retum AnctherProduct;
... # =0 on for the other lds
return null;

Procedural Solution

Client
ask for a new olject
public Praduct createProduct{String ProductiD)
== interfacs == if (i==101}
Product retum new OneProdud);
& if (id==1D2)
1 retum AnctherProduct;
i Fact ... # =0 on for the other lds
| crestes actory return null;
Concrete Product (<

+create Produdproduct D:int): Product I

The problem here is that once we add a new
concrete product call we should modify the

Factory class. It is not very flexible and it violates
open close principle.

Class Registration Solution

We want to have a reduced coupling between the factory and
concrete products.

Since the factory should be unaware of products we have to use
reflection or move the creation of objects outside of the factory
to an object aware of the concrete products classes. That would
be the concrete class itself.

In the later, a new abstract method is added in the product
abstract class. Each concrete class will implement this method to
create a new object of the same type as itself. We also have to
change the registration method such that we'll register concrete
product objects instead of Class objects.

Class Registration Solution
Abstract Product

abstract class Product

{

public abstract Product createProduct();

Class Registration Solution
Product Factory

class ProductFactory

{
private HashMap m_RegisteredProducts = new HashMap();

public void registerProduct(String productID, Product p) {
m_RegisteredProducts.put(productID, p);

}

public Product createProduct(String productID){

((Product)m_RegisteredProducts.get(productlID)).createProduct();
}

//Otherwise use reflection

Class Registration Solution
Real Product

class Productl extends Product {

/] ...

static

{

ProductFactory.instance().registerProduct("ID1", new Product1());
}
public Productl createProduct()
{

return new Productl();

}

Factory Method

The most intuitive solution to avoid modifying the Factory
class is to implement an interface

Client
ask for a new object
L4
<< interface == L 4
Product < Factory
JA JAN
1 1
| |
1 1
Comncrete Product ConcreteFactory

... or extend it: 10

Factory Method

== interface ==
Product

A

Concrete Product

=

Factory

+actoryiMetho df): Product
+doS omething(): void

vioid doSomething) {
product = factoryh ethod(;
Nelo something with the produc

H

Conc retefa ctory

+actoryethod): Product-

Product factoryMethod() {
return new ConcreteProduct(y

H

There are some drawbacks over the class registration implementation and not so many advantages:

+ The derived factory method can be changed to perform additional operations when the objects are
created (maybe some initialization based on some global parameters ...).

- The factory cannot be used as a singleton.

- Each factory has to be initialized before using it.

- More difficult to implement.

- If a new object has to be added a new factory has to be created.

11

Factory Method Example

<2 nterface =

N oaennent

+0pen() void
+3ave(flenamne:String] vaid
+tloze() void

Apllication

create Document can have a default implementation o ot

+eieata Necume oty e Sheing) Docament
+newD ocument(type: String) void
+apanD ocum ant(flenams Stringvoid

4 - < public void NewDocument(String type){
Document doc=CreateDocumentiype),
Docsaddidoc)

Do Open()
|

ConereteCreator

MyDocument &
public Documemt’
type){ ’

’

AN
Product factorgMethad]) {

Hactortethod:Documert
Cr eat eDocunent (Stri ng }

if (type.isEqual ("htm "))
return new Ht m Docunent () ;
if (type.isEqual ("proprietary"))
return new MyDocunent () ;

if (type.isEqual ("pdf"))

return new Pdf Docunent ();

return new ConcreteProcuct(;

Factory Method Drawbacks and Benefits

+ The main reason for which the factory pattern is used is that it
introduces a separation between the application and a family of
classes (it introduces weak coupling instead of tight coupling hiding
concrete classes from the application). It provides a simple way of
extending the family of products with minor changes in application
code.

+ It provides customization hooks. When the objects are created
directly inside the class it's hard to replace them by objects which
extend their functionality. If a factory is used instead to create a
family of objects the customized objects can easily replace the
original objects, configuring the factory to create them.

- The factory has to be used for a family of objects. If the classes
doesn't extend common base class or interface they can not be
used in a factory design template.

Abstract Factory

Abstract Factory offers the interface for
creating a family of related objects,
without explicitly specifying their classes.

ed: Abstract Factory Implem n - UML Class Diag)

AbstractFac tory

< Client
=

+create Productd () AbstractProd uctd
te ProductB ():AbstractProd uct8

AlstractPro AbstractProduc
ConcreteFactonyd Come reteFactory? i
|||||||| rodudtAl) AbstractProd uctd +createProdud A() AbstractProductd

eeeeeeee raductB () AbstractPmod uctB +createProdudB () AbstractProd uctB ProductA1 ProductA2 | ProductB1 Products 2

Abstract Factory

1. The fact that the factory returns an abstract pointer
to the created object means that the client doesn't
have knowledge of the object's type. This implies
that there is no need for including any class
declarations relating to the concrete type, the client
dealing at all times with the abstract type. The
objects of the concrete type, created by the factory,
are accessed by the client only through the abstract
interface.

Abstract Factory

2. The second implication of this way of creating
objects is that when the adding new concrete types
is needed, all we have to do is modify the client
code and make it use a different factory, which is far
easier than instantiating a new type, which requires
changing the code wherever a new object is created.

Abstract Factory Example

cd: Ahstrad Factory - Look & Feel Example - UML Class Diagram)

LookAndFeal

L

+reate Button(). Button
+oreate TextFreidl): EditBox

WindowslLookAndFeel

MotiflLookAndF eel

+create Button (), Button +createProdudAL) Button
+createEditBox(T EditBox +createProdudB(); EditBox

Client

Button

Editfox

WindowsB utton

MotifB utton

WindowsE ditB ox

MotifE ditB ox

/

/

17

