
Design Patterns
Lecture 1Lecture 1

Manuel Mastrofini

Systems Engineering and Web Services

University of Rome Tor Vergata

June 2011

Definition
• A pattern is a reusable solution to a commonly occurring

problem within a given context.

– A pattern is a proposed way to resolve a problem.

– In the field of software design, examples of a problem may be:
• Control the creation of objects.

• Assign responsibilities to classes or objects.

• Manage collections of classes and objects.

• Adapt the runtime behavior of objects.

06/2011, Manuel Mastrofini 2

• Adapt the runtime behavior of objects.

– Context may differentiate two structurally similar patterns.

• A pattern may be used for both design and refactoring, in
order to improve quality.

• Main reference for design patterns: “Design Patterns:
Elements of Reusable Object Oriented Software” by E.
Gamma, R. Helm, R. Johnson, and J. Vlissides (Gang of four).

– It contains 23 patterns, classified into 3 categories: creational,
behavioral and structural.

Classification of patterns (GoF)
• A pattern has:

– Name

– Purpose: what a pattern does.

• Creational: facilitate object creation.

• Structural: support composition of classes and objects.

• Behavioral: help distribute responsibilities and control interactions.

– Scope: if a pattern applies to classes or to objects.

• Class patterns include compile-time defined relationships (generalization).

• Object patterns allow relationships to be created and changed at run-time.

06/2011, Manuel Mastrofini 3

Creational Structural Behavioral

Abstract Factory (o) Adapter (c/o) Chain of responsibility (o) Observer (o)

Builder (o) Bridge (o) Command (o) State (o)

Factory Method (c) Composite (o) Interpreter (o) Strategy (o)

Prototype (o) Decorator (o) Iterator (o) Template method (c)

Singleton (o) Facade (o) Mediator (o) Visitor (o)

Flyweight (o) Memento (o)

Proxy (o)

• Object patterns allow relationships to be created and changed at run-time.

Why (and what) patterns

• Patterns help create high quality software, i.e. encapsulation,
modularity, flexibility, ease of use, evolution, extensibility.

– Algorithmic independency: c: Builder; s:; b: Iterator, Strategy, Template
Method, Visitor.

– Creating an object without specifying a class explicitly: c: Abstract
Factory, Factory Method, Prototype.

– Independence from specific operations: b: Chain of responsibility,

06/2011, Manuel Mastrofini 4

– Independence from specific operations: b: Chain of responsibility,
Command.

– Independence from object representation or implementation: c:
Abstract Factory; s:Bridge, Proxy.

– Loose coupling: c: Abstract Factory; s: Bridge, Façade; b: Command,
Mediator, Observer.

– Extending functionality by sub-classing: s: Bridge, Composite,
Decorator; b:Command, Observer, Strategy.

– Ability to alter classes conveniently: c:Adapter; b:Decorator, Visitor.

Pattern inter-relationships

• There are many
relationships among
patterns.

• Some patterns are
alternative.

– One has to be
selected.

06/2011, Manuel Mastrofini 5

selected.

• Some patterns are
complementary.

– They are expected to
be combined.

• Parts of a complex
pattern may be
implemented by
using other patterns.

Creational patterns

Singleton

• Intent: ensure a class only has one instance at
most, and provide a global point of access to it.

• Singleton: defines an

Instance operation that lets

clients access its unique

06/2011, Manuel Mastrofini 7

clients access its unique

instance. Instance is a class

operation.

Variant: Instead of one instance, the number of class

instances may be controlled to be any number.

Factory Method (Virtual Constructor)

• Intent: define an interface for creating an object, but let
subclasses decide which class to instantiate.

• Product: defines the interface of objects the factory method creates.

• ConcreteProduct: implements the Product interface.

• Creator: declares the factory method, which returns an object of type Product.
Creator may also define a default implementation of the factory method that
returns a default ConcreteProduct object. The Creator may call the factory
method to create a Product object.

06/2011, Manuel Mastrofini 8

method to create a Product object.

• ConcreteCreator: overrides the factory method to return an instance of a
ConcreteProduct.

Prototype
• Intent: Specify the kinds of objects to create using a prototypical

instance, and create new objects by copying this prototype.

• Prototype: declares an interface for cloning itself.

• ConcretePrototype: implements an operation for cloning itself.

• Client: creates a new object by asking a prototype to clone itself.

06/2011, Manuel Mastrofini 9

Variant: Create a Prototype

Manager class which manages a

registry containing all prototypes,

so that the Client ask for a

prototype by providing a key.

Abstract Factory (Kit)
• Intent: provide an interface for creating families of related or

dependent objects without specifying their concrete classes.

• AbstractFactory: interface for
operations that create abstract
product objects. It could be a
singleton and generally leverages
the factory method pattern.

• ConcreteFactory: implements the
operations to create concrete

06/2011, Manuel Mastrofini 10

operations to create concrete
product objects.

• AbstractProduct: interface for a
type of product object.

• ConcreteProduct: to be created
by the corresponding concrete
factory.

Variant: If there are many product

families, then the Prototype pattern

could be used; in this case, there is no

need to create a ConcreteFactory for

each family.

Builder
• Intent: Separate the construction logic of a complex object from its

representation so that the same construction process can create different
representations.

• Builder: specifies an abstract interface
for creating parts of a Product object.
Director: constructs an object using
the Builder interface.

• Product: represents the complex

06/2011, Manuel Mastrofini 11

• Product: represents the complex
object under construction.

• ConcreteBuilder: constructs and
assembles parts of the product by
implementing the Builder interface
and defines the process by which it is
assembled; comprises classes that
define the constituent parts; defines
and keeps track of the representation
it creates; provides an interface for
retrieving the product.

Structural patterns
Part 1

Adapter (Wrapper)
• Intent: It converts the interface of a class into another

interface clients expect. Adapter lets classes work together
that couldn't otherwise because of incompatible interfaces.

• Target: defines the domain-specific

interface that Client uses.

• Adapter: adapts the interface of Adaptee

to the Target interface. In inherits from

06/2011, Manuel Mastrofini 13

to the Target interface. In inherits from

Adaptee (class adapter) or have a

composition with it (object adapter). In the

first case, subclasses of Adaptee cannot

leverage the pattern adaption

• Adaptee: defines an existing interface that

needs adapting.

Variant: When two views of the same entity are used by two clients, a two-way adapter

can be built by using multiple inheritance: the adapter inherits from the two classes

used by the two clients.

Bridge (Body, Handle)
• Intent: It decouples an abstraction from its implementation so that

the two can vary independently and be extended independently.

06/2011, Manuel Mastrofini 14

• Abstraction: defines the abstraction's interface and maintains a reference to an object

of type Implementor. It could be aware of the Implementor’s hierarchy and use the

right subclass, or it could leverage the Abstract Factory pattern to instantiate the right

subclass without statically coupling any concrete implementor to the Abstraction.

• RefinedAbstraction: extends the interface defined by Abstraction.

• Implementor: defines the interface for implementation classes. Typically the

Implementor interface provides only primitive operations, and Abstraction defines

higher-level operations based on these primitives.

• ConcreteImplementor: defines the concrete implementation of Implementor.

Façade
• Intent: Provide a unified interface to a set of interfaces in a subsystem.

06/2011, Manuel Mastrofini 15

• Façade: knows which subsystem classes are responsible for a request and delegates

client requests to appropriate subsystem objects. It is generally a Singleton.

Variant: If façade is abstract, then different implementation of the same subsystems can

be configured by the client. This could be an implementation of Abstract Factory.

