
Introduction to Rational Unified Process

Page 1

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 1

Introduction to Rational Unified Process

Introduction to Rational Unified Process

Page 2

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 2

Objectives: Rational Unified Process

!! Describe the six software development Describe the six software development best practicesbest practices
!! Describe the Describe the Unified Modeling Language (UML)Unified Modeling Language (UML)
!! Define what a Define what a software development processsoftware development process isis
!! Describe the Describe the Rational Unified ProcessRational Unified Process
!! Explain the four Explain the four phasesphases of the Rational Unified Process and of the Rational Unified Process and

their associated milestonestheir associated milestones
!! Define Define iterations iterations and their relation to phases and their relation to phases
!! Explain the relations between phases, iterations, and Explain the relations between phases, iterations, and

workflowsworkflows
!! Define Define artifactartifact, , workerworker, and, and activityactivity
!! State the importance of automated tool supportState the importance of automated tool support

In this module, we take a high-level look at the Rational Unified Process, our
process for the UML that supports and encourages the best practices we
discussed earlier.
Software development is the process of developing a software system from
requirements. A software process provides a disciplined approach to
assigning tasks and responsibilities within a development organization, to
ensure production of a high-quality software product that meets the needs of
its end users within a predictable schedule and budget. The Rational Unified
Software Process is a software process which incorporates the six principles
for software development we have just examined. It codifies them into a
formal, written set of procedures and practices that are complete, thorough,
and self-consistent.

Introduction to Rational Unified Process

Page 3

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 3

Software Development Situation Analysis

World economies
increasingly software
dependent

Applications expanding
in size, complexity, &
distribution

Business demands
increased productivity &
quality in less time

Not enough qualified
people

The good news for software professionals is that worldwide economies are
becoming increasingly dependent on software. The kinds of software-intensive
systems that improvements in technology make possible, and that society
demands, are expanding in size, complexity, distribution, and importance. In
the US alone, we spend more than $250 billion each year on IT application
development of approximately 175,000 projects (Source: Chaos Report,
http://www.standishgroup.com).
The bad news is that these systems are expanding in size, complexity,
distribution, and importance, for it pushes the limits of what we in the software
industry know how to do. Poor quality software is becoming more visible. We
often read about it in the newspaper! Some significant examples include:

AT&T. A software switching system failed and hindered long distance
communication in the US for almost 24 hours. The resolution required a
change to a single line of code.

Denver Airport. Software defects delayed the airport’s opening almost 9
months, at an estimated taxpayer cost of about 1/2 million dollars / day.

Further compounding the problem, businesses continue to demand increased
productivity and quality with faster development and deployment. Additionally,
the supply of qualified development personnel is not keeping pace with the
demand. 1998 estimates of open software jobs range from 200,000 to
400,000. Economists predict that another million new programmers will be
needed within the next nine years.

Introduction to Rational Unified Process

Page 4

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 4

Software Development is a Job for Teams

Project
Manager

Performance
Engineer

Release
Engineer

Analyst

Developer

Tester

Challenges

• Larger teams

• Specialization

• Distribution

• Rapid technology
change

Because of the size and complexity of modern software systems, software
development is a team endeavor. Larger teams present communication
challenges which are aggravated if the team is distributed. Complex
technologies require experts who specialize in only one area. A team may
include many such specialists. It is a challenge to ensure they communicate
effectively with the rest of the team and that all technologies are integrated to
produce a successful system. The pace of technological change continues to
accelerate and many technologies are used before they have been proven.

Introduction to Rational Unified Process

Page 5

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 5

Symptoms of Software Development Problems

!! Inaccurate understanding of endInaccurate understanding of end--user needsuser needs
!! Inability to deal with changing requirementsInability to deal with changing requirements
!! Modules that don’t fit togetherModules that don’t fit together
!! Software that’s hard to maintain or extendSoftware that’s hard to maintain or extend
!! Late discovery of serious project flaws Late discovery of serious project flaws
!! Poor software qualityPoor software quality
!! Unacceptable software performanceUnacceptable software performance
!! Team members in each other’s way, unable to reconstruct Team members in each other’s way, unable to reconstruct

who changed what, when, where, why who changed what, when, where, why
!! An untrustworthy buildAn untrustworthy build--andand--release processrelease process

Producing quality software on time is very challenging; a large number
obstacles and problems must be overcome. Problems are often first
recognized by their symptoms. These are some all-too-common ones.

The reality is that we can’t stop change. We used to try to baseline
requirements at the start of a project and then resist all changes to them. A
better approach is to develop practices that allow us to manage change when
it occurs, with minimal impact to the development process.

An example associated with software that’s hard to maintain or extend is the
Year 2000 (Y2K) problem. The software itself has been unexpectedly
successful, lasting well beyond its estimated end of life projections. But the
software is very hard to modify since the Y2K problem is pervasive. It occurs
throughout the software and each occurrence must be found and fixed
individually.

Introduction to Rational Unified Process

Page 6

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 6

Symptoms
end-user needs
changing
requirements
modules don’t fit
hard to maintain
late discovery
poor quality
poor
performance
colliding
developers
build-and-release

Root Causes
insufficient requirements
ambiguous
communications
brittle architectures
overwhelming
complexity
undetected
inconsistencies
poor testing
subjective
assessment
waterfall
development
uncontrolled change
insufficient automation

Diagnose

Treating Symptoms Does Not Solve the Problem

Unfortunately, treating these symptoms does not treat the disease. For
example, late discovery of serious project flaws is only a symptom of larger
problems, namely, inadequate testing. Waterfall development compounds the
problem since testing is done very late in the development schedule when the
flaws discovered cannot be corrected without a significant delay in delivery.
From Rational's many collective years working with customers, we have
identified a set of root causes that underlie these symptoms.

Introduction to Rational Unified Process

Page 7

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 7

Root Causes of Software Development Problems

!! Insufficient requirements managementInsufficient requirements management
!! Ambiguous and imprecise communicationsAmbiguous and imprecise communications
!! Brittle architectures Brittle architectures
!! Overwhelming complexityOverwhelming complexity
!! Undetected inconsistencies among requirements, designs, Undetected inconsistencies among requirements, designs,

and implementationsand implementations
!! Insufficient testingInsufficient testing
!! Subjective project status assessmentSubjective project status assessment
!! Delayed risk reduction due to waterfall development Delayed risk reduction due to waterfall development
!! Uncontrolled change propagationUncontrolled change propagation
!! Insufficient automationInsufficient automation

These root causes have been determined by analyzing Rational’s experience
in developing its software products together with the experience of Rational’s
many customers. Common patterns and themes have been detected and are
documented as these root causes and the best practices that address them.
Insufficient requirements management makes scope creep inevitable and
seriously jeopardizes the development team’s ability to bring the project to a
conclusion on time.
Brittle architectures are architectures that break easily in response to stress or
requirements/technology changes. They typically provide no reusable
components nor are they based on a reusable framework.
Subjective project status assessment depends on subjective estimates of the
level of “doneness”. This is often referred to as the “90% done, 90%
remaining” phenomenon. In other words, the developers estimate that they are
90% done, but it takes 90% of project resources to get the rest of the way to
100% done.

Introduction to Rational Unified Process

Page 8

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 8

"" Insufficient requirementsInsufficient requirements
"" Ambiguous communicationsAmbiguous communications
"" Brittle architecturesBrittle architectures
"" Overwhelming complexityOverwhelming complexity
"" Subjective assessment Subjective assessment
"" Undetected inconsistenciesUndetected inconsistencies
"" Poor testingPoor testing
"" Waterfall developmentWaterfall development
"" Uncontrolled changeUncontrolled change
"" Insufficient automationInsufficient automation

"" Develop iterativelyDevelop iteratively
"" Manage requirementsManage requirements
"" Use component architecturesUse component architectures
"" Model the software visuallyModel the software visually
"" Verify qualityVerify quality
"" Control changesControl changes

Root CausesRoot Causes Best PracticesBest Practices

Best Practices Address Root Causes

Treat these root causes and you’ll eliminate the symptoms. Eliminate the
symptoms, and you’ll be in a much better position to develop quality software
in a repeatable and predictable fashion.
Best practices are a set of commercially proven approaches to software
development which, when used in combination, strike at the root causes of
software development problems. These are so called “best practices” not so
such much because we can precisely quantify their value, but rather, because
they are observed to be commonly used in industry by successful
organizations.
These six best practices form the foundation of the Rational Unified Process.
They are documented in The Rational Unified Process - An Introduction, by
Philippe Kruchten (Addison-Wesley-Longman, 1998).

Introduction to Rational Unified Process

Page 9

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 9

Symptoms
end-user needs
changing
requirements
modules don’t fit
hard to maintain
late discovery
poor quality
poor performance
colliding developers
build-and-release

Root Causes
insufficient requirements
ambiguous
communications
brittle architectures
overwhelming complexity
undetected
inconsistencies
poor testing
subjective assessment
waterfall development
uncontrolled change
insufficient automation

Best Practices
develop iteratively
manage requirements
use component
architectures
model the software
visually
verify quality
control changes

Addressing Root Causes Eliminates the Symptoms

Introduction to Rational Unified Process

Page 10

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 10

Develop IterativelyDevelop Iteratively

Control ChangesControl Changes

Use Use
ComponentComponent

ArchitecturesArchitectures
Manage Manage

RequirementsRequirements
Model Model

VisuallyVisually
VerifyVerify

QualityQuality

Best Practices of Software Engineering

In the remainder of this module, we describe recommended software
development practices and give the reasons for these recommendations. We
will use this key graphic again and again in presenting the 6 best practices.

Introduction to Rational Unified Process

Page 11

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 11

In Building a System, a Language Is Not Enough

Modeling
Language

Unified
Process

Team-Based
Development

The UML provides a standard for the artifacts of development (semantic
models, syntactic notation, and diagrams): the things that must be controlled
and exchanged. But the UML is not a standard for the process of
development.

Despite all of the value that a common modeling language brings, successful
development of today’s complex systems cannot be achieved solely by the
use of the UML. Successful development also requires the employment of an
equally robust development process.

Introduction to Rational Unified Process

Page 12

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 12

What Is the UML?

!! The Unified Modeling Language (UML) is a language forThe Unified Modeling Language (UML) is a language for
• Specifying
• Visualizing
• Constructing
• Documenting

the artifacts of a softwarethe artifacts of a software--intensive systemintensive system

The software systems we develop today are much more complex than the
human mind can comprehend in their entirety. This is why we model systems.
The choice of what models to create has a profound influence upon how a
problem is attacked and how a solution is shaped. No single model is
sufficient; every complex system is best approached through a small set of
nearly independent models. To increase comprehension, a common language
like the Unified Modeling Language is used to express models.

Introduction to Rational Unified Process

Page 13

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 13

UML History

The UML is now the industry standard modeling language. Its development
was spearheaded by three leaders in the object-oriented industry: Grady
Booch, Ivar Jacobson, and Jim Rumbaugh. Each of them had unique
approaches in the early 1990s that were converging independently. Rational
Software brought these three industry leaders together to accelerate
convergence to a single modeling approach. The UML is the outcome of that
effort.

The UML has been under development since 1990. Early versions have
gradually converged into the UML standard 1.1 that was adopted unanimously
by the OMG in November 1997. Numerous books, articles, and papers have
been written about or are using the UML today and many more are to come.
And finally, most tool vendors today are supporting the UML.

Version 1.3 of the UML is under development at the present time.

Introduction to Rational Unified Process

Page 14

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 14

Inputs to UML

Fusion

Operation descriptions,
Message numbering

Meyer

Before and after
conditions

Harel

State charts

Wirfs-Brock

Responsibilities

Embley

Singleton classes,
High-level view

Odell

Classification

Shlaer - Mellor

Object Lifecycles

Gamma, et.al

Frameworks, patterns,
notes

Booch
JacobsonRumbaugh

UML development included incorporating ideas from numerous other
methodologists. The main challenge was constructing an approach that was
simple yet allowed the modeling of a broad range of systems. The conceptual
framework was established quickly but the notational semantics took more
time.

Active collaboration with other industry leaders has brought unique expertise
and experience into the UML effort. The UML effort was supported by a large
cross-section of the industry. Partners in the UML effort included HP, ICON
Computing, IBM, I-Logix, Intellicorp, MCI Systemhouse, Microsoft, ObjecTime,
Oracle, Platinum Technology, Ptech, Reich Technologies, Softeam, Sterling
Software, Taskon, and Unisys. These partners provided contributors,
reviewers, and advocates for the standardization efforts.

In the end, a modeling language was created that has already stood up to the
test of widespread use in the industry and to the scrutiny of international
standardization efforts.

Introduction to Rational Unified Process

Page 15

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 15

The UML Provides Standardized Diagrams

Deployment
Diagrams

Deployment
Diagrams

Use-Case
Diagrams

Use-Case
DiagramsUse-Case

Diagrams
Use-Case
DiagramsUse-Case

Diagrams
Use-Case
Diagrams

Scenario
Diagrams
Scenario
DiagramsScenario

Diagrams
Scenario
DiagramsSequence

Diagrams
Sequence
Diagrams

State
Diagrams

State
DiagramsState

Diagrams
State

DiagramsState
Diagrams

State
Diagrams

Component
Diagrams

Component
DiagramsComponent

Diagrams
Component
DiagramsComponent
Diagrams

Component
Diagrams

Models

State
Diagrams

State
DiagramsState

Diagrams
State

DiagramsObject
Diagrams
Object

Diagrams

Scenario
Diagrams
Scenario
DiagramsScenario

Diagrams
Scenario
DiagramsCollaboration

Diagrams
Collaboration

Diagrams

Use-Case
Diagrams

Use-Case
DiagramsUse-Case

Diagrams
Use-Case
DiagramsActivity

Diagrams
Activity

Diagrams

State
Diagrams

State
DiagramsState

Diagrams
State

DiagramsClass
Diagrams

Class
Diagrams

In building a visual model of a system, many different diagrams are needed to
represent different views of the system. The UML provides a rich notation for
visualizing our models. This includes the following key diagrams:

•Use-Case diagrams to illustrate user interactions with the system.

•Class diagrams to illustrate logical structure.

•Object diagrams to illustrate objects and links.

•State diagrams to illustrate behavior.

•Component diagrams to illustrate physical structure of the software.

•Deployment diagrams to show the mapping of software to hardware
configurations.

•Interaction diagrams (i.e., collaboration and sequence diagrams) to
illustrate behavior.
•Activity diagrams to illustrate the flow of events in a Use-Case.

Introduction to Rational Unified Process

Page 16

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 16

A Sample UML Diagram: Use-Cases
A University Course Registration SystemA University Course Registration System

Professor

Select Courses to Teach

Student

Course Catalog

Register for Courses

Maintain Student Information

Maintain Professor Information

Registrar

Billing System
Close Registration

Use-Case diagrams are used to show the existence of Use-Cases and their
relationships, both to each other and to actors. An actor is something external
to the system that has an interface with the system, such as users. A Use-
Case models a dialogue between actors and the system. A Use-Case is
initiated by an actor to invoke a certain functionality in the system. For
example, in the diagram above, one user of the system is a student who
wishes to use the system to register for courses. Hence, Register for Courses
is a Use-Case.

The arrow (which is optional) indicates the direction of initiation of the
interaction. For example, the Student actor initiates the Register for Courses
Use-Case. However, the Close Registration Use-Case initiates interaction
with the Billing System.

A Use-Case is a complete and meaningful flow of events. The flow of events
supplements the Use-Case diagram and is usually provided in text format.

Taken together, all Use-Cases constitute all possible ways of using the
system.

Introduction to Rational Unified Process

Page 17

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

A class diagram is a view of the classes composing the system, as well as
their relationships. Classes are represented by rectangles. Relationships are
represented by lines. The presence of a relationship between two classes
indicates that they collaborate in some way in performing one or more Use-
Cases. For example, the relationship between MainForm and
MaintainScheduleForm means that a MainForm may or may not contain one
MaintainScheduleForm.
The items preceded by “//” in the lower third of the class boxes indicate the
responsibilities of the classes. For example, CourseCatalogSystem is
responsible for get course offerings. During design of this class, this
responsibility will be turned into one or more operations.
The items within angle brackets (“<< >>”) indicate the stereotype of the class.
For example, CourseCatalogSystem is a boundary class which means that it
interfaces with an external entity (I.e., an actor).

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 17

A Sample UML Diagram: Classes
A University Course Registration SystemA University Course Registration System

MainForm

// select maintain schedule()

<<boundary>> MaintainScheduleForm

+ // open()
+ // select 4 primary and 2 alternate offerings()

<<boundary>>

1 0..11

CourseCatalogSystem

// get course offerings()

<<boundary>> 1 0..*
RegistrationController

// add courses to schedule()
// get course offerings ()

<<control>>

1

1

Schedule

// create with offerings()

<<entity>>

1

0..1

Introduction to Rational Unified Process

Page 18

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 18

UML Diagrams Are Key Artifacts

Actor A

Use-Case 1

Use-Case 2

Actor B

user : »ç¿ëÀÚ

mainWnd : MainWnd

fileMgr : FileMgr

repository : Repository
document : Document

gFile : GrpFile

9: sortByName ()

L1: Doc view request ()

2: fetchDoc()

5: readDoc ()

7: readFile ()

3: create ()

6: fillDocument ()

4: create ()

8: fillFile ()

GrpFile

read()
open()
create()
fillFile()

rep

Repository

name : char * = 0

readDoc()
readFile()

(from Persistence)

FileMgr

fetchDoc()
sortByName()

DocumentList

add()
delete()

Document

name : int
docid : int
numField : int

get()
open()
close()
read()
sortFileList()
create()
fillDocument()

fList

1

FileList

add()
delete()

1

File

read()

read() fill the
code..

UI

MFC

RogueWave

global

DocumentApp

Persistence
 Window95

¹®¼-°ü¸®
Å¬¶óÀÌ¾ðÆ®.EXE

 Windows
NT

¹®¼-°ü¸® ¿£Áø.EXE

Windows
NT

Windows95

Solaris

ÀÀ¿ë¼-¹ö.EXE

 Alpha
UNIX

 IBM
Mainframe

µ¥ÀÌÅ¸º£ÀÌ½º¼-¹ö

Windows95

¹®¼-°ü¸® ¾ÖÇÃ¸´

ºÐ»ê È¯°æÀÇ ÇÏµå¿þ¾î¹× ³×Æ®¿÷À¸·ÎÀÇ Á¤º¸ ½Ã½ºÅÛ ¿¬°á ¸ðµ¨
 - À©µµ¿ì 95 : Å¬¶óÀÌ¾ðÆ®
 - À©µµ¿ì NT: ÀÀ¿ë¼-¹ö
 - À¯´Ð½º ¸Ó½Å: ÀÀ¿ë ¼-¹ö ¹× µ¥ÀÌÅ¸ ¼-¹ö, Åë½Å ¼-¹ö
 - IBM ¸ÞÀÎÇÁ·¹ÀÓ: µ¥ÀÌÅ¸ ¼-¹ö, Åë½Å ¼-¹ö

Document

FileManager

GraphicFile
File

Repository DocumentList

FileList

user
mainWnd fileMgr :

FileMgr
repositorydocument :

Document
gFile

1: Doc view request ()

2: fetchDoc()

3: create ()

4: create ()

5: readDoc ()

6: fillDocument ()

7: readFile ()

8: fillFile ()

9: sortByName ()

Æ¯Á¤¹®¼-¿¡ ´ëÇÑ º¸±â¸¦
»ç¿ëÀÚ°¡ ¿äÃ»ÇÑ´Ù.

È-ÀÏ°ü¸®ÀÚ´Â ÀÐ¾î¿Â
¹®¼-ÀÇ Á¤º¸¸¦ ÇØ´ç ¹®¼-
°´Ã¼¿¡ ¼³Á¤À» ¿äÃ»ÇÑ´Ù.

È-¸é °´Ã¼´Â ÀÐ¾îµéÀÎ
°´Ã¼µé¿¡ ´ëÇØ ÀÌ¸§º°·Î
Á¤·ÄÀ» ½ÃÄÑ È-¸é¿¡
º¸¿©ÁØ´Ù.

Customer
name
addr

withdraw()
fetch()
send()

receive()

<<entity>>

Forward Engineering(Code Generation)
and

Reverse Engineering

Executable System

User Interface
Definition

Domain
Expert

Openning

Writing

Reading Closing

add file [numberOffile==MAX] /
flag OFF

add file

close file

close file

Use-Case 3

Source Code edit, compile, debug, link

Use-Case
Diagram Class Diagram

Collaboration Diagram

Sequence Diagram

Component
Diagram

State Diagram

Package
Diagram

Deployment
DiagramClass

The UML provides a single, common modeling language that is useable
across many methods, across the entire lifecycle, and across many different
implementation technologies. It maps the artifacts between business
engineering, requirements capture and analysis, design, implementation, and
test. It defines an expressive and consistent notation that can point out
omissions and inconsistencies. It scales to support very small to very large
systems development. If facilitates effective communications with all members
of the development team.

Introduction to Rational Unified Process

Page 19

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 19

New or changed
requirements

New or changed
system

Software Engineering
Process

What Is a Process?

A process defines A process defines WhoWho is doing is doing WhatWhat, , WhenWhen and and How How to to
reach a certain goal. In software engineering the goal is to reach a certain goal. In software engineering the goal is to
build a software product or to enhance an existing onebuild a software product or to enhance an existing one

The UML is a generic modeling language. With UML, you can produce
blueprints for any kind of software system.

The Rational Unified Process (RUP) is a generic process that uses UML as a
modeling language. RUP can be used for any kind of software system.

Introduction to Rational Unified Process

Page 20

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 20

An Effective Process ...

!! Provides guidelines for efficient development of quality Provides guidelines for efficient development of quality
softwaresoftware

!! Reduces risk and increases predictability Reduces risk and increases predictability
!! Captures and presents best practicesCaptures and presents best practices

Learn from other’s experiences
Mentor on your desktop
Extension of training material

!! Promotes common vision and culturePromotes common vision and culture
!! Provides roadmap for applying toolsProvides roadmap for applying tools
!! Delivers information onDelivers information on--line, at your finger tipsline, at your finger tips

The focus of the process is the production of high-quality executables with a
minimum of overhead, rather than what documents to produce.
By providing a “written-down”, very detailed set of procedures for developing
software according to Rational’s six best practices, the process is easier to
apply and repeatable. This results in software projects that are more
predicable and successful.
Another feature of the Rational Unified Process is that it is not just theory. It
instructs the developer on how to implement the activities using the tools the
developer is using.
Finally, the process is available on-line as a Website. While hardcopy books
have their place, most developers prefer to reference the process from their
desktops when they need help. Both hardcopy and on-line versions are
available.

Introduction to Rational Unified Process

Page 21

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 21

Rational Unified Process Delivers Best Practices

Rational Unified Process describes how to effectively Rational Unified Process describes how to effectively
implement the six best practices for software developmentimplement the six best practices for software development

Control ChangesControl Changes

Develop IterativelyDevelop Iteratively

Use Use
ComponentComponent

ArchitecturesArchitectures
Manage Manage

RequirementsRequirements
Model Model

VisuallyVisually
VerifyVerify

QualityQuality

The six best practices examined in the previous module provide the basis for
the Rational Unified Process. However, their effective application requires
step-by-step instructions. These instructions are provided in the Rational
Unified Process, which looks at all activities that must be performed to build a
software product and describes how to conduct those activities consistent with
the 6 best practices. Tool mentors are included to explain how to conduct
those activities using the Rational tool set.

Introduction to Rational Unified Process

Page 22

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 22

Rational Unified Process Is Use-Case Driven

Withdraw Money

Customer

An An actoractor is someone or is someone or
something outside the something outside the
system that interacts system that interacts
with the systemwith the system

A A UseUse--CaseCase is a sequence is a sequence
of actions a system of actions a system
performs that yields an performs that yields an
observable result of observable result of
value to a particular value to a particular
actoractor

Check Balance

Use-Cases for a Cash Machine

Managing requirements is one of the six best practices already discussed. In
particular, the Rational Unified Process captures and manages functional
requirements in a Use-Case model. Use-Cases are a key concept within the
process. They are used throughout the development cycle as a driver for
many activities, flowing information through several models, and encouraging
consistency across these models.
An actor can be a human being or another system or a device; anything
external with which the system interacts.
A Use-Case describes functionality from the user’s point of view. A bank
customer can use a cash machine to withdraw money or check the balance of
her account. Each Use-Case (oval) represents something that the system
does to provide value to the bank’s customer, the Customer. The collected
Use-Cases constitute the use-case model and represent all the possible ways
of using the system. The use-case model is a model of the system’s intended
functions and its environment, and it serves as a contract between the
customer and the developers.
The use-case model is complemented by non-functional specifications
covering some of the aspects that cannot be easily conveyed by a Use-Case,
or that apply to many or all Use-Cases; for example, high-level product
requirements, development constraints, safety or security attributes, and so
on.
The notation used for representing the use-case model in diagrams is
standard notation provided by the UML.

Introduction to Rational Unified Process

Page 23

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 23

Use-Cases Include a Flow of Events

Flow of events for the Withdraw Money UseFlow of events for the Withdraw Money Use--CaseCase
1. The Use-Case begins when the customer inserts a cash card.

The system reads and validates information on the card.
2. The system prompts for the PIN. The system validates the

PIN.
3. The system asks which operation the customer wishes to

perform. The customer selects “Cash withdrawal.”
4. The system requests the amount. The customer enters the

amount.
5. The system requests the account type. The customer selects

checking or savings.
6. The system communicates with the ATM network . . .

The most important part of the Use-Case is the its flow of events, describing
the sequence of actions. It is written in natural language, in a simple,
consistent prose, with a precise use of terms, drawing upon a common
glossary of the problem domain. For example, the term “ATM” would be an
acronym commonly used in the banking industry and defined in the project
glossary (as Automated Teller Machine).

Introduction to Rational Unified Process

Page 24

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 24

Benefits of a Use-Case Driven Process

!! UseUse--Cases are concise, simple, and understandable by a Cases are concise, simple, and understandable by a
wide range of stakeholderswide range of stakeholders
End users, developers and acquirers understand functional

requirements of the system
!! UseUse--Cases drive numerous activities in the process:Cases drive numerous activities in the process:

Creation and validation of the design model
Definition of test cases and procedures of the test model
Planning of iterations
Creation of user documentation
System deployment

!! UseUse--Cases help synchronize the content of different modelsCases help synchronize the content of different models

Introduction to Rational Unified Process

Page 25

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 25

Rational Unified Process Is Architecture-Centric

!! Architecture is the focus of the early iterationsArchitecture is the focus of the early iterations
Building, validating, and baselining the architecture constitute

the primary objective of elaboration
!! The Architectural Prototype validates the architecture and The Architectural Prototype validates the architecture and

serves as the baseline for the rest of developmentserves as the baseline for the rest of development
!! The Software Architecture Document is the primary artifact The Software Architecture Document is the primary artifact

that describes the architecture chosenthat describes the architecture chosen
!! Other artifacts derive from architecture:Other artifacts derive from architecture:

Design guidelines including use of patterns and idioms
Product structure
Team structure

Use of component-based architectures is one of the six best practices already
discussed. Architecture is used in the Rational Unified Process as a primary
artifact for conceptualizing, constructing, managing, and evolving the system
under development. The Rational Unified Process emphasizes early
development and validation of software architecture as a core concept. It
defines two primary artifacts related to architecture: the Software Architecture
Description (SAD) which describes the architectural views relevant to the
project and the Architectural Prototype. The Rational Unified Process also
defines a worker, called the Architect, who is responsible for the architecture.
The bulk of the activities related to architectural design are described in the
analysis and design workflow, but it spills over to the requirements workflow,
the implementation workflow, and the project management workflow.

Introduction to Rational Unified Process

Page 26

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 26

Representing Architecture: The 4+1 View Model

Process
View

Deployment
View

Logical
View

Implementation
View

Programmers
Software management

Performance
Scalability
Throughput

System Integrators
System topology

Delivery, installation
communication

System Engineering

Use-Case
View

Structure

Analysts/
Designers End-user

Functionality

Many different parties are interested in the architecture (e.g., the system
analyst, the designers, the end uses, etc.). To allow these parties or
stakeholders to communicate, discuss and reason about architecture, we
need to have an architectural representation that they understand. Because
different stakeholders have different concerns and because architecture is
quite complex, multiple views are required to represent architecture
adequately. An architectural view is a simplified description (an abstraction)
of a system from a particular perspective or vantage point, covering particular
concerns and omitting entities that are not relevant to this perspective.
While many views of architecture can be useful, the Rational Unified Process
identifies 4+1 views as a standard set:
The logical view addresses the functional requirements of the system. It is an
abstraction of the design model, identifying major design packages,
subsystems and classes.
The implementation view describes the organization of static software
modules in the development environment, in terms of packaging, layering, and
configuration management.
The process view addresses the concurrent aspect of the system at run-time:
tasks, threads or processes, and their interactions.
The deployment view shows how the various executables and other run-time
components are mapped onto the underlying platforms or computing nodes.
The use-case view contains a few key scenarios or Use-Cases that are used
to drive the architecture and to validate it.

Introduction to Rational Unified Process

Page 27

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 27

Benefits of an Architecture-Centric Process

!! Lets you gain and retain intellectual control over a project, toLets you gain and retain intellectual control over a project, to
manage its complexity, and to maintain system integritymanage its complexity, and to maintain system integrity

!! Provides an effective basis for largeProvides an effective basis for large--scale reusescale reuse
!! Provides a basis for project managementProvides a basis for project management
!! Facilitates componentFacilitates component--based developmentbased development

A component fulfills a clear function in the context of a well-
defined architecture

A component conforms to and provides the physical
realization of a set of interfaces

Components exist relative to a given architecture

A complex system is more than the sum of its parts, more than a succession
of small independent tactical decisions. It must have some unifying, coherent
structure to organize those parts systematically, and provide precise rules on
how to grow the system without having its complexity “explode” beyond
human understanding. Architecture provides this structure and these rules.
By clearly articulating the major components and the critical interfaces among
them, an architecture lets you reason about reuse, both internal reuse (the
identification of common parts), and external reuse (the incorporation of
ready-made, off-the-shelf components. Architecture can also facilitate reuse
on a larger scale: the reuse of the architecture itself in the context of a product
line that addresses different functionality in a common domain.
Planning and staffing are organized along the lines of major components:
layers and subsystems.

Introduction to Rational Unified Process

Page 28

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 28

InceptionInception ElaborationElaboration ConstructionConstruction TransitionTransition

Process Architecture - Lifecycle Phases

The Rational Unified Process has four phases:The Rational Unified Process has four phases:
Inception - Define the scope of project
Elaboration - Plan project, specify features, baseline

architecture
Construction - Build the product
Transition - Transition the product into end user community

time

During Inception, we define the scope of the project, what is included, and
what is not. This is done by identifying all the actors and Use-Cases, and by
drafting the most essential Use-Cases (usually approximately 20% of the
complete model). A business plan is developed to determine whether
resources should be committed to the project.

During Elaboration, we focus on two things: get a good grasp of the
requirements (90% complete) and establish an architectural baseline. If we
have a good grasp of the requirements and the architecture, we can eliminate
a lot of the risks and will have a good idea what amount of work remains to be
done. Detailed cost/resource estimations can be made at the end of
Elaboration.

During Construction, we build the product in several iterations up to a beta
release.

During Transition, we transition the product to the end user and focus on end
user training, installation, and support.

The amount of time spent in each phase varies. For a very complex project
with a lot of technical unknowns and unclear requirements, Elaboration may
include 3-5 iterations. For a very simple project where requirements are
known and the architecture is simple, Elaboration may include only a single
iteration.

Introduction to Rational Unified Process

Page 29

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 29

InceptionInception ElaborationElaboration ConstructionConstruction TransitionTransition

Phase Boundaries Mark Major Milestones

Lifecycle
Objective
Milestone

Lifecycle
Architecture

Milestone

Initial Operational
Capability
Milestone

Product
Release

time

At each of the major milestones,the project is reviewed and a decision made
as to whether to proceed with the project as planned, to abort the project, or to
revise it. The criteria used to make this decision vary by phase.

The evaluation criteria for the inception phase (LCO) include: stakeholder
concurrence on scope definition and cost/schedule estimates; requirements
understanding as evidenced by the fidelity of the primary Use-Cases;
credibility of cost/schedule estimates, priorities, risks, and development
process; depth and breadth of any architectural prototype; actual expenditures
versus planned expenditures.

The evaluation criteria for the elaboration phase (LCA) include: stability of the
product vision and architecture; resolution of major risk elements; adequate
planning and reasonable estimates for project completion; stakeholder
acceptance of the product vision and project plan; acceptable expenditure
level.

The evaluation criteria for the construction phase (IOC) include: stability and
maturity of the product release (I.e., is it ready to be deployed?); readiness of
the stakeholders for the transition; acceptable expenditure level.

At the end of the transition phase, a decision is made whether to release the
product. This will be based primarily on the level of user satisfaction achieved
during the transition phase. Often this milestone coincides with the initiation of
another development cycle to improve or enhance the product. In many cases,
this new development cycle by already be underway.

Introduction to Rational Unified Process

Page 30

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 30

Iterations and Phases

An An iterationiteration is a distinct sequence of activities with an is a distinct sequence of activities with an
established plan and evaluation criteria, resulting in established plan and evaluation criteria, resulting in
an executable release (internal or external)an executable release (internal or external)

PreliminaryPreliminary
IterationIteration

Architect.Architect.
IterationIteration

Architect.Architect.
IterationIteration

Devel. Devel.
IterationIteration

Devel. Devel.
IterationIteration

Devel. Devel.
IterationIteration

TransitionTransition
IterationIteration

TransitionTransition
IterationIteration

InceptionInception ElaborationElaboration ConstructionConstruction TransitionTransition

Minor Milestones: Releases

Within each phase, there is a series of iterations. The number of iterations per
phase will vary. Each iteration results in an executable release encompassing
larger and larger subsets of the final application.
An internal release is kept within the development environment and
(optionally) demonstrated to the stakeholder community. An external release
is provided to stakeholders (usually users) for installation in their own
environment. External releases are much more expensive (they require user
documentation and technical support) and normally occur only during the
transition phase.
The end of an iteration marks a minor milestone. It is a point in time when
technical results are assessed and future plans revised as necessary.

Introduction to Rational Unified Process

Page 31

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 31

Major Workflows Produce Models

Analysis & Analysis &
DesignDesign

Implementation
Model

Test
Model

realized by

implemented by

verified by

RequirementsRequirements

ImplementationImplementation

TestTest

Use-Case
Model

Design
Model

BusinessBusiness
ModelingModeling Business

Use-Case Model automated by
Business

Object Model

The Rational Unified Process is a model-driven approach. Several models are
needed to fully describe the evolving system. Each major workflow produces
one of those models. The models are developed incrementally across
iterations.

The Business Model is a model of what the business processes are and the
business environment. It can be used to generate requirements on supporting
information systems.

The Use-Case Model is a model of what the system is supposed to do and the
system environment.

The Design Model is an object model describing the realization of Use-Cases.
It serves as an abstraction of the implementation model and its source code.
The Implementation Model is a collection of components, and the
implementation subsystems that contain them.
The Test Model encompasses all of the test cases and procedures required to
test the system.

Introduction to Rational Unified Process

Page 32

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 32

Bringing It All Together: The Iterative Model

Project Management
Environment

Business Modeling

Implementation
Test

Analysis & Design

Preliminary
Iteration(s)

Iter.
#1

Phases
Process Workflows

Iterations

Supporting Workflows

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

Deployment

Configuration & Change Mgmt

Requirements

Elaboration TransitionInception Construction

Workflows
group
activities
logically

In an
iteration,
you walk
through all
workflows

This graphic illustrates how phases and iterations, or the time dimension,
relates to the development activities performed, or the workflow dimension.
The relative size of the color area indicates how much of the activity is
performed in each phase/iteration.

Each iteration involves activities from all workflows. The relative amount of
work related to the workflows changes between iterations. For instance,
during late Construction, the main work is related to Implementation and Test
and very little work on Requirements is done.

Note that requirements are not necessarily complete by the end of
Elaboration. It is acceptable to delay the analysis and design of well-
understood portions of the system until Construction because they are low in
risk.

Introduction to Rational Unified Process

Page 33

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 33

Process Notation

Worker

Activity

Artifact

Describe a
Use-Case

Use-Case
Package

Use-Case

responsible for

Use-Case
Specifier

A unit of work a
worker may be
asked to perform

A piece of
information that is
produced, modified,
or used by a process

A role that may be
played by an
individual or a team
in the development
organization

An artifact is something you produce in the course of developing a software
product. It includes the source code itself as well as the models, documents
and other products of the life cycle. The UML provides notation for
representing many of the artifacts of the development process.

An activity is the smallest piece of work that is relevant. It is not reasonable to
do only part of an activity. Dividing the work in this manner makes it easier to
monitor development. It is better (easier) to know that the project has
completed three out of five activities rather than 60% of one activity. Examples
of activities are Plan an Iteration, and Review The Design.

A worker defines the behavior and responsibilities of an individual, or a set of
individuals working together as a team. This is an important distinction
because it is natural to think of a worker as the individual or the team itself. In
the Rational Unified Process, the worker is more of a role that defines how the
individuals should carry out the work. An example of a worker is a project
manager.

Introduction to Rational Unified Process

Page 34

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 34

Resource

Paul
Mary
Joe
Sylvia
Stefan

Workers Are Used for Resource Planning

Each individual in
the project is
assigned to one or
several workers

Worker

Designer
Use-Case Specifier
System Analyst
Implementer
Architect

Activities

Define Operations
Detail a Use-Case
Find Actors and Use-Cases
Perform Unit Tests
Identify Design Mechanisms

In developing a project plan, a project manager assigns the individuals
available to workers according to their skills and abilities. Each individual on
the project is assigned to one or several workers. The association of
individuals to workers is dynamic over time.

An individual may act as several different workers during the same day. We
can informally call this “wearing several hats.” Sylvia may be both a design
reviewer and a use-case designer.

Several individuals may act as the same worker to perform a certain activity
as a team. Paul and Mary may serve as the Use-Case designer for a single
Use-Case.

Introduction to Rational Unified Process

Page 35

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 35

Business Modeling Workflow

Find Business Actors
and Use CasesBusiness-Process

Analyst

Structure the
Business Use-Case

Model

Capture a
Common

Vocabulary Business Model
Reviewer

Review the
Business

Use-Case Model

Detail a
Business Use Case

Business
Designer

Review the
Business

Object ModelDetail a
Business Entity

Find Business Workers
and Entities

Detail a
Business Worker

This workflow diagram shows business modeling activities and the workers
responsible for them. Not everyone begins system development by doing
business modeling. This is an optional step.

The purposes of the Business Modeling workflow are:

• To understand the structure and dynamics of the organization.

• To ensure that customers, end users and developers have a
common understanding of the organization.

• To derive requirements on systems to support the organization.

To achieve these goals, a business use-case model and a business object
model are developed. Complementary to these models, a Supplementary
Business Specification and a Glossary are usually developed.

Introduction to Rational Unified Process

Page 36

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 36

Requirements Workflow

Use-Case
Specifier

Requirements
Reviewer

User-Interface
Designer

Capture a
Common

Vocabulary

Find Actors
and Use Cases

Review
Requirements

Structure the
Use-Case Model

User-Interface
Prototyping

Detail a
Use Case

Elicit Stakeholder
Needs

Manage
Dependencies

Architect
Prioritize

Use Cases

Develop
Vision

User-Interface
Modeling

The purposes of the Requirements workflow are:

• To come to an agreement with the customer and the users on what
the system should do.

• To give system developers a better understanding of the
requirements on the system.

• To delimit the system.

• To provide a basis for planning the technical contents of iterations.

• To define a user-interface for the system.

To achieve these goals, a Vision document, a Stakeholder Needs document,
a use-case model, and a Supplementary Specification document are
developed that describes what the system will do - an effort that views
customers and potential users as important sources of information (in addition
to system requirements).

Complementary to the above mentioned artifacts, the following artifacts are
developed:

• Glossary
• Use-Case Storyboard
• Boundary Class
• User-Interface Prototype

Introduction to Rational Unified Process

Page 37

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 37

Analysis & Design Workflow

Architect

Designer

Architectural
Analysis

Architecture
Reviewer

Review the
Design

Review the
Architecture

Use-Case
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Database
Designer

Class
Design

SubsystemDesign

Use-Case
Design

Database
Design

Design
Reviewer

The purposes of the Analysis and Design workflow are:

• To transform the requirements into a design of the system to-be.

• To evolve a robust architecture for the system.

• To adapt the design to match the implementation environment,
designing it for performance.

The primary artifacts of the Analysis and Design workflow are:

• Design model, defining Use-Case realizations, classes, and design
packages/subsystems

• Software Architecture Document

• Data model

Introduction to Rational Unified Process

Page 38

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 38

Implementation Workflow

Integrate
System

Architect

System Integrator

Implementer

Code Reviewer

Implement
Classes

Perform
Unit Test

Structure the
Implementation Model

Integrate
Subsystem

Review Code

Fix a Defect

Plan System
Integration

Plan Subsystem
Integration

The purposes of the Implementation workflow are:

• To define the organization of the code, in terms of implementation
subsystems organized in layers.

• To implement classes and objects in terms of components (source
files, binaries, executables, and others).

• To test the developed components as units.

• To integrate the results produced by individual implementers (or
teams), into an executable system.

The Implementation workflow limits its scope to how individual classes are to
be unit tested. System test and integration test are described in the Test
workflow.

The primary artifacts of the Implementation workflow are:

• Implementation model, defining components and implementation
subsystems

• Integration Build Plan

Introduction to Rational Unified Process

Page 39

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 39

Test Workflow

Design Test

ImplementTest
Test Designer

Integration
Tester

System Tester

Evaluate
Test

Execute Integration
Test

Execute System
Test

Designer
Design Test Classes

and Packages

Implementer
Implement Test Components

and Subsystems

PlanTest

Performance
Tester

Execute Performance
Test

The purposes of the Testing workflow are:

• To verify the interaction between objects.

• To verify the proper integration of all components of the software.

• To verify that all requirements have been correctly implemented.

• To identify and ensure defects are addressed prior to the
deployment of the software.

The primary artifacts of the Testing workflow are:

• Test model, defining test cases, procedures, and scripts

• Test Plans

• Defects

• Test packages, classes, subsystems, and components

Introduction to Rational Unified Process

Page 40

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 40

Project Management Workflow

Develop
Business

Case

Project
Manager

Develop
Project
Plan

Revisit Risk List

Staff
Project

Evaluate
Iteration

Execute
Iteration

Plan

Develop
Iteration

Plan

Identify
Risks

The purposes of the Project Management workflow are:

• To provide a framework for managing software-intensive projects.

• To provide practical guidelines for planning, staffing, executing, and
monitoring projects.

• To provide a framework for managing risk.

The Project Manager is responsible for the following artifacts:

• The Software Development Plan, including the Risk List, Project
Plan, and Measurement Plan.

• The Business Case.

• The Iteration Plan.

• The Iteration Assessment.

• Status Assessments.

Introduction to Rational Unified Process

Page 41

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 41

Configuration and Change Management Workflow

Project
Manager

Architect

CM
Manager

System
Integrator

Establish Product
Change Process

Structure
Implementation

Model

Setup
Implementation

ModelWrite
CM Plan

Define Workspaces
& Build Areas

Create Private
Workspaces

Check-In/Out
Artifacts

Promote
Configuration Items

Create Integration
workspaces

Build
Product

Report
Defect Data

Baseline
the Product

Release
Subsystems

Define Status Reporting
& Baselining Requirements

Any Worker

A CM System is useful for managing multiple variants of evolving software
systems, tracking which versions are used in given software builds,
performing builds of individual programs or entire releases according to user-
defined version specifications, and enforcing site-specific development
policies.

Some of the direct benefits provided by a CM System are that it:
• supports development methods,
• maintains product integrity,
• ensures completeness and correctness of the configured product,
• provides a stable environment within which to develop the product,
• restricts changes to artifacts based on project policies, and

• provides an audit trail on why, when and by whom any artifact was
changed.

In addition, a CM System stores detailed ‘accounting’ data on the
development process itself: who created a particular version (and when, and
why), what versions of sources went into a particular build, and other relevant
information.

Introduction to Rational Unified Process

Page 42

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 42

Environment Workflow

!! Configuring the processConfiguring the process
!! Improving the processImproving the process
!! Selecting and acquiring toolsSelecting and acquiring tools
!! ToolsmithingToolsmithing
!! Supporting the developmentSupporting the development
!! TrainingTraining

Configuring the process consists of adapting and tailoring the Rational Unified
Process to suit the needs of an organization or project. Improving the process
allows the process to evolve by capturing lessons learned as a project
progresses or is completed.
A toolsmith develops tools to support special needs, provides additional
automation of tedious or error-prone tasks, and provides better integration
between tools.

Supporting the development includes maintaining the development
environment, both hardware and software, system administration,
telecommunications, and document creation and reproduction.

Introduction to Rational Unified Process

Page 43

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 43

Guidelines, Mentors, and Templates

!! Guidelines are the rules, recommendations, and heuristics Guidelines are the rules, recommendations, and heuristics
that support activitiesthat support activities
For example, modeling and programming guidelines

!! Tool mentors explain how to use a specific tool to perform Tool mentors explain how to use a specific tool to perform
an activity or steps in an activityan activity or steps in an activity
For example, building a design model using Rational Rose

!! Templates are predefined artifactsTemplates are predefined artifacts
For example, a Rational SoDA template for a Use-Case

Report
!! Guidelines, tool mentors and templates make it easier to Guidelines, tool mentors and templates make it easier to

apply the process correctly and consistentlyapply the process correctly and consistently

While we have focused mainly on the overall framework of the Rational
Unified Process, i.e., the phases and workflows, the process provides much
more technical and detailed guidance for the developer. Guidelines, tool
mentors and templates are used by developers on a daily basis to accomplish
their technical tasks.

Introduction to Rational Unified Process

Page 44

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 44

Tool Support for the Entire Project Lifecycle

Process Workflows
Business ModelingBusiness Modeling

RequirementsRequirements

Analysis and DesignAnalysis and Design

ImplementationImplementation

TestTest

DeploymentDeployment

ConfigConfig. & Change Mgmt.. & Change Mgmt.
Project ManagementProject Management

EnvironmentEnvironment

Requisite Pro, Rose, SoDA

Rose, Apex, SoDA, Purify, ...
SQA TeamTest, Quantify, PerformanceStudio,...

ClearCase, ClearQuest

Rose, SoDA, Apex

Unified Process, Rational Tools

SoDA, ClearCase, ...
Supporting Workflows

Requisite Pro, Rose, SoDA

Unified Process, Microsoft® Project, ...

As might be expected, many tools are required to fully support a software
development process, including tools for:

Modeling
Requirements management
Code development (editors, compilers, and debuggers)
Configuration management and change management
Testing
Planning and tracking
Documentation

The graph above is not meant to be an exhaustive list of tools. In general, the
mapping from process workflows to tools is one-to-many. For example,
textual requirements are managed in RequisitePro, but Use-Cases are
typically modeled in Rose. So requirements capture is supported by both
RequisitePro and Rose. Further, SoDA can combine the requirements from
both Requisite Pro and Rose into a well-formed and complete requirements
specification. Hence, for each component, the mapping is one to many.

Introduction to Rational Unified Process

Page 45

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 45

Adopting a Process
!! Process adoption includes configuring and Process adoption includes configuring and

implementing the processimplementing the process
!! In In configuringconfiguring the process, the process framework is the process, the process framework is

adapted to the needs and constraints of the adopting adapted to the needs and constraints of the adopting
organizationorganization
The result is documented in a “Development Case”

!! In In implementingimplementing the process, the organization’s the process, the organization’s
practice is changed to effectively use the processpractice is changed to effectively use the process

The term "development case" is used to refer to tailoring the Rational Unified
Process to a specific organization and/or project. The factors most likely to
affect the shape of the process include:

•The business context (contract work versus commercial
development)
•The size of the effort (very large projects need more formality and
more checks and balances)
•The degree of novelty (a green-field development versus a
maintenance cycle)
•The type of application (safety-critical versus time to market driven)

The process itself contains detailed information on how to develop a
development case, the decisions to be made, and a sample development
case.

Introduction to Rational Unified Process

Page 46

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 46

!! The The Unified Modeling Language (UML)Unified Modeling Language (UML) is a language for is a language for
specifying, visualizing, constructing, and documenting specifying, visualizing, constructing, and documenting
the artifacts of a softwarethe artifacts of a software--intensive systemintensive system

!! A software development process defines A software development process defines WhoWho is doing is doing
What, When What, When andand HowHow in building a software productin building a software product

!! The Rational Unified Process has four phases: The Rational Unified Process has four phases:
Inception, Elaboration, Construction and TransitionInception, Elaboration, Construction and Transition

!! Each phase ends at a major milestone and contains one Each phase ends at a major milestone and contains one
or more iterationsor more iterations

!! An An iterationiteration is a distinct sequence of activities with an is a distinct sequence of activities with an
established plan and evaluation criteria, resulting in an established plan and evaluation criteria, resulting in an
executable releaseexecutable release

Summary: Rational Unified Process

Introduction to Rational Unified Process

Page 47

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

Unified Software Practices v 5.0-D
Copyright  1998 Rational Software, all rights reserved 47

Summary (cont.): Rational Unified Process

!! A A workflowworkflow groups related activities togethergroups related activities together
!! Each workflow is exercised during an Each workflow is exercised during an iteration iteration and results and results

in a model that is incrementally producedin a model that is incrementally produced
!! An An artifactartifact is a piece of information that is produced, is a piece of information that is produced,

modified, or used by a processmodified, or used by a process
!! A A workerworker is a role that may be played by an individual or a is a role that may be played by an individual or a

team in the development organization team in the development organization
!! An An activityactivity is a unit of work a worker may be asked to is a unit of work a worker may be asked to

performperform

