GQM: Goal Question Metrics

Introduction

Main reference "Understanding Measurement and Practical Implementation of GQM", V. R. Basili, C. B. Seaman, 2010

- Many organizations collect a lot of data
 - Effort spent on a project or task
 - Lines of code written
 - Expertise of people involved in a project or task
 - Defects in the product at a given development phase
- Collecting data is expensive
 - Need to plan measurement, produce procedures, train people, instrument production environments, analyze and elaborate data..
- Measurement must not be a goal per se
- Measurement must be the means to an end
 - Characterize and Understand (e.g. descriptive and analysis models)
 - Evaluate and Predict (Evaluation and prediction models)
 - Improve (prescriptive models)

- Why do organizations measure?
 - Gain insight in their business
 - Build baselines
 - Find correlations
 - Identify critical factors
 - Manage and control based on evidence
 - Plan and estimate
 - Track and monitor
 - Make runtime decisions
 - Improve and Optimize
 - Prioritize
 - Assess
 - Package experience for future reuse

- Some questions that measurement should answer
 - How much is this going to cost?
 - Is everything going fine?
 - Is this issue common?
 - What should I do now to mitigate the issue?
 - Is the product going to meet the expected non functional requirements?

- What can we model and measure?
 - Resources
 - E.g. Resource allocation models...
 - Changes/Defects
 - E.g. Defect prediction models, requirements change rate...
 - Product
 - E.g. Actual vs expected product size, number of components...
 - Processes
 - E.g. Waterfall...
 - Quality
 - E.g. Reliability models...

GQM: Goal Question Metrics

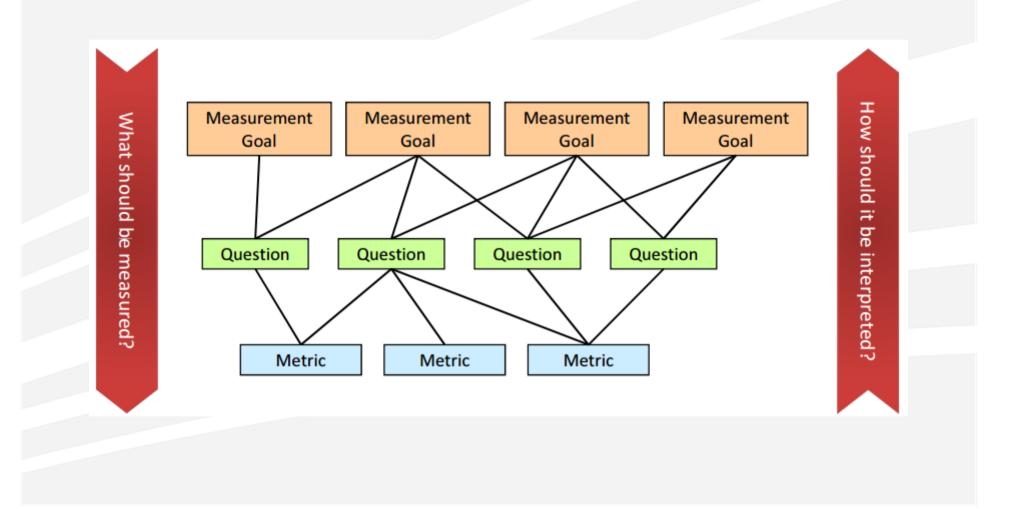
- An Approach to Software Measurement
 - Goal-driven measurement
 - Define your goals (objectives) first
 - Derive questions to refine the goal and address the goal
 - Define metrics that, when collected, can answer the questions
 - Evidence-based
 - Build interpretation models to check the achievement of goals against collected measures
 - Context-aware
 - Make assumptions and context factors explicit

GQM Template: Definition of Goals

- Mechanism for defining and interpreting measurable goals
 - Object of study
 - E.g. A process (unit testing), a product (requirements artifact)...
 - Focus
 - E.g. Performance, number of detected defects, cost
 - Point of view (perspective)
 - E.g. Developer, project manager, researcher...
 - Purpose
 - E.g. Characterize, predict...
 - Context
 - E.g. Environmental constraints, project characterization...

GQM Questions

- Specify the required information that help to achieve the goal
 - Natural language
- Questions should refine the goal to such an extent that it is completely specified and quantifiable
 - Need understanding of the problem and of the context
 - The "point of view" is relevant to the definition of questions
 - Interviews with experts can be a way to build questions
 - Questions can be used to build a baseline for improvement



GQM Metrics

- Answer the questions
- Easy to collect
 - Collecting is a cost
 - May require changes in the current process
- Can be reused to answer multiple questions or to satisfy multiple goals

GQM in a Nutshell

GQM Abstraction Sheet

- Tool for
 - Refining and structuring goals and identify metrics
 - Eliciting information during interviews

Object of study	Purpose	Focus	Point of view
Quality Focus		Variation factors	
What are the possible metrics for measuring a goal object?		Which factors influence the possible metrics?	
Baseline hypotheses		Impact of variation factors on baseline hypotheses	
What's the current knowledge or expectations about metrics?		<i>How could variation factors influence the metrics?</i>	

An Example: Product Measurement

- A company C is about to develop a new product
- C wants to create a repository for it
 - C needs to characterize such product with respect to a variety of attributes
 - Logical, Physical, Cost, Changes, Defects, Customer satisfaction
- C will deliver the product to a variety of customers with different "profiles"
- C wants to know each class of customers' satisfaction
- C wants to predict the reliability of the product for each customer class

An Example: Product Measurement

- A company C is about to develop a new product
- C wants to create a repository for it
 - C needs to characterize such product with respect to a variety of attributes

 Logical, Physical, Cost, Changes, Defects, Customer satisfaction

- C will deliver the product to a variety of customers with different "profiles"
- C wants to know each class of customers' satisfaction
- C wants to predict the reliability of the product for each customer class

Examples of GQM Template

 Analyze the <u>final product</u> for the purpose of <u>characterizing</u> it with respect to <u>logical</u>, <u>physical</u>, cost, changes and defects from the point of view of <u>C</u>

An Example: Product Measurement

- A company C is about to develop a new product
- C wants to create a repository for it
 - C needs to characterize such product with respect to a variety of attributes
 - Logical, Physical, Cost, Changes, Defects, Customer satisfaction
- C will deliver the product to a variety of customers with different "profiles"
- C wants to know each class of customers' satisfaction
- C wants to predict the reliability of the product for each customer class

Examples of GQM Template

- 1. Analyze the <u>final product</u> for the purpose of <u>characterizing</u> it with respect to <u>logical</u>, <u>physical</u>, <u>cost</u>, <u>changes</u> and <u>defects</u> from the point of view of <u>C</u>
- 2. Analyze the <u>final product</u> for the purpose of <u>evaluation</u> with respect to <u>customer's</u> <u>satisfaction</u> from the point of view of <u>various</u> <u>customer classes</u>

An Example: Product Measurement

- A company C is about to develop a new product
- C wants to create a repository for it
 - C needs to characterize such product with respect to a variety of attributes
 - Logical, Physical, Cost, Changes, Defects, Customer satisfaction
- C will deliver the product to a variety of customers with different "profiles"
- C wants to know each class of customers' satisfaction
- C wants to predict the reliability of the product for each customer class

Examples of GQM Template

- 1. Analyze the <u>final product</u> for the purpose of <u>characterizing</u> it with respect to <u>logical</u>, <u>physical, cost, changes and defects</u> from the point of view of <u>C</u>
- 2. Analyze the <u>final product</u> for the purpose of <u>evaluation</u> with respect to <u>customer's</u> <u>satisfaction</u> from the point of view of <u>various</u> <u>customer classes</u>
- 3. Analyze the <u>final product</u> for the purpose of <u>predicting</u> with respect to <u>reliability</u> from the point of view of <u>various customer classes</u>

- Goal 1
 - Analyze the <u>final product</u> for the purpose of <u>characterizing</u> it with respect to <u>logical</u>, <u>physical</u>, cost, changes and defects from the point of view of <u>C</u>
- For example
 - What's the size of the product?
 - Pages/lines of user documentation or source code
 - .
 - What's the complexity of the product?
 - Cyclomatic complexity
 - Data complexity
 - •
 - What's the resource consumption of the product?

- Goal 1
 - Analyze the <u>final product</u> for the purpose of <u>characterizing</u> it with respect to <u>logical</u>, <u>physical</u>, <u>cost</u>, <u>changes</u> and <u>defects</u> from the point of view of <u>C</u>
- For example
 - What's the development effort by phase?
 - What's the involved personnel?
 - What's the used machine time?
 - What's the calendar time required to develop?

- Goal 1
 - Analyze the <u>final product</u> for the purpose of <u>characterizing</u> it with respect to <u>logical</u>, <u>physical</u>, <u>cost</u>, <u>changes</u> and <u>defects</u> from the point of view of <u>C</u>
- For example

. . .

- What's the number of enhancements?
 - Per unit of time
 - Per phase
 - Per category
 - Type of enhancement
 - Size (number of changed lines of code, number of affected components)
- How many customers are affected?

- Goal 1
 - Analyze the <u>final product</u> for the purpose of <u>characterizing</u> it with respect to <u>logical</u>, <u>physical</u>, <u>cost</u>, <u>changes</u> and <u>defects</u> from the point of view of <u>C</u>
- For example
 - What's the number of bugs?
 - Per type
 - ...
 - What's the frequency of errors?
 - What's the number of failures?
 - By severity
 - Per unit of time
 - Per customer class

Example of Context

- And what about the «context» dimension?
- For example, consider:
 - Customer community
 - What classes of customers are expected to use the system?
 - What is the matrix of functional requirements vs. customer classes?
 - Operational profile
 - What percent of the system is expected to be executed by each customer class?

One More Example: Process Measurement

 Analyze the <u>unit test method U</u> for the purpose of <u>evaluating</u> it with respect to <u>defect slippage</u> from the point of view of <u>Unit Tester</u>

Object of study	Purpose	Focus	Point of view
Unit test method U	Evaluation	Defect slippage	Unit tester
Quality Focus		Variation factors	
DD: Percentage of detected defects HSSD: Estimated percentage of high severity slipped defects		V1: Experience of coders with used technologies V2: Experience of unit testers with product domain V3: Use of condition coverage criteria	
Baseline hypotheses		Impact of variation factors on baseline hypotheses	
DD = 80% HSSD = 15%		Increase of DD when increasing V1 Decrease of HSSD when increasing V2 Increase of DD when V3 is true	

Interpretation Model

- We defined goals, asked questions and identified metrics.
- Next step: collect measures
 - Now that you have measures, what do they mean?
 - Hypothesis: you wanted to reduce cost by 10%
 - Some actions were taken by leveraging the GQM approach
 - Three cases
 - Cost reduction is 7%
 - Cost reduction is 11%
 - Cost reduction is 4%
 - So what?
 - Without an interpretation model, measures do not objectively indicate whether the goal was met

Interpretation Model

- An interpretation model defines the expected mathematical bounds on the metric and the interpretation of the values of the metrics in order to answer the targe question
- For each metric
 - Estimate the expected value
 - Historical data
 - Prior data on the current project
 - Proxy estimate (indicators)
 - Expert estimate
 - Identifies ranges of acceptance
 - Use known distributions (e.g. normal)
 - Use some form of regression or computation on proxy data
 - Expert estimate

Example of Interpretation Model

- Evaluate unit test method U
 - Expected DD_{new}: 80%
 - Current DD_{old} without U: 70%
 - Interpretation model:
 - If DD_{new} = DD_{old} ± 5% then U should be better investigated
 - Else if DD_{old} < DD_{new} then U should be institutionalized
 - Else if $DD_{old} > DD_{new}$ then U should be rejected

