
Architectural and Use Case Analysis

Page 1

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 1

Architectural and
Use Case Analysis

Ing. Giuseppe Calavaro, Ph.D.

In this module, we describe recommended software development practices and
give the reasons for these recommendations.

Architectural and Use Case Analysis

Page 2

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 2

Management
Environment

Test
Analysis & Design

Preliminary
Iteration(s)

Iter.
#1

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+2

Iter.
#m

Iter.
#m+1

Configuration & Change Mgmt

Requirements
Elaboration TransitionInception Construction

The purposes of Analysis and Design are:

•To transform the requirements into a design of the
system to-be.
•To evolve a robust architecture for the system.

•To adapt the design to match the implementation
environment, designing it for performance.

Analysis and Design in Context

The purpose of Analysis and Design is to:
•Transform the requirements into a design of the system to-be.
•Evolve a robust architecture for the system.
•Adapt the design to match the implementation environment, designing it for performance.
The Analysis and Design workflow is related to other process workflows.
•The Business Modeling workflow provides an organizational context for the system.
•The Requirements workflow provides the primary input for Analysis and Design.
•The Test workflow tests system designed during Analysis and Design.
•The Environment workflow develops and maintains the supporting artifacts that are used during
Analysis and Design.
•The Management workflow plans the project and each iteration (described in an Iteration Plan).

Architectural and Use Case Analysis

Page 3

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 3

Supplementary
Specification

Use-Case Model
Design Model

Data Model

Architecture
Document

Analysis
and Design

Glossary

Analysis and Design Overview

The input artifacts are the Use-Case Model, Glossary, and Supplementary Specification from the
Requirements workflow. The result of analysis and design is a Design Model that serves as an
abstraction of the source code; that is, the design model acts as a "blueprint" of how the source
code is structured and written. The Design Model consists of design classes structured into design
packages; it also contains descriptions of how objects of these design classes collaborate to
perform use cases (use-case realizations).
The design activities are centered around the notion of architecture. The production and validation
of this architecture is the main focus of early design iterations. Architecture is represented by a
number of architectural views. These views capture the major structural design decisions. In
essence architectural views are abstractions or simplifications of the entire design, in which
important characteristics are made more visible by leaving details aside. The architecture is an
important vehicle not only for developing a good design model, but also for increasing the quality of
any model built during system development. The architecture is documented in the Architecture
Document.
The development of the Architecture Document is out of the scope of this course, but we will
discuss it’s contents and how to interpret them.
Data model development is out of the scope of this course.

Architectural and Use Case Analysis

Page 4

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 4

Analysis Versus Design

! Analysis
" Focus on

understanding the
problem

" Idealized design
" Behavior
" System structure
" Functional

requirements
" A small model

! Design
" Focus on

understanding the
solution

" Operations and
Attributes

" Performance
" Close to real code
" Object lifecycles
" Non-functional

requirements
" A large model

The differences between analysis and design are ones of focus and emphasis. The above slide
lists the things that you focus on in analysis versus design.
The goal in Analysis is to understand the problem and to begin to develop a visual model of what
you are trying to build, independent of implementation and technology concerns. Analysis focuses
on translating the functional requirements into software concepts. The idea is to get a rough cut at
the objects that comprise our system, but focusing on behavior (and therefore encapsulation). We
then move very quickly, nearly seamlessly into “design” and the other concerns.
A goal of design is to refine the model with the intention of developing a design model that will allow
a seamless transition to the coding phase. In design, we adapt to the implementation and the
deployment environment. The implementation environment is the 'developer' environment, which is
a software superset and a hardware subset of the deployment environment
In modeling, we start with an object model that closely resembles the real world (analysis), and then
find more abstract (but more fundamental) solutions to a more generalized problem (design). The
real power of software design is that it can create more powerful metaphors for the real world which
change the nature of the problem, making it easier to solve.

Architectural and Use Case Analysis

Page 5

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 5

Top
Down

Bottom
UpDesign Classes

Subsystems

Use Cases

Analysis and Design is not Top-Down or Bottom-Up

Analysis and design is not top-down or bottom-up.
The use case comes in from the left and defines a middle level.
The analysis classes are not defined in a top-down pattern or a bottom-up pattern they are in the
middle. From this middle level one may move up or down.
Defining subsystems is moving up and defining design classes is moving down.
Analysis is both top-to-middle, middle-up, middle-down and bottom-to-middle. There is no way of
saying that one path is more important than the other - you have to travel on all paths to get the
system right.
All of these four paths are equally important. That is why the bottom-up and top-down question can´t
be solved.

Architectural and Use Case Analysis

Page 6

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 6

Process View Deployment View

Logical View

Use-Case View

Implementation View

End-user
Functionality

Programmers
Software management

Performance
Scalability
Throughput

System integrators
System topology

Delivery, installation
communication

System engineering

Analysts/Designers
Structure

Software Architecture: The “4+1 View” Model

The above diagram describes the model Rational uses to describe the software architecture.
Architecture is many things to many different interested parties. On a particular project, there are
usually multiple stakeholders, each with their own concerns and view of the system to be
developed. The goal is to provide each of these stakeholders with a view of the system that
addresses their concerns, and suppresses the other details.
To address these different needs, Rational has defined the “4+1 view” architecture model. An
architectural view is a simplified description (an abstraction) of a system from a particular
perspective or vantage point, covering particular concerns, and omitting entities that are not relevant
to this perspective. Views are “slices” of models.
Not all systems require all views (e.g., single processor: drop deployment view; single process: drop
process view; small program: drop implementation view, etc.). A project may document all of these
views or additional views. The number of views is dependent on the system you’re building.
Each of these views, and the UML notation used to represent them, will be discussed in subsequent
modules.

Architectural and Use Case Analysis

Page 7

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 7

Architect

Designer

Architectural
Analysis

Architecture
Reviewer

Review the
Design

Review the
Architecture

Use-Case
Analysis

Architectural
Design

Describe
Concurrency

Describe
Distribution

Class
Design

Subsystem Design

Use-Case
Design

Design
Reviewer

Analysis and Design Workflow

The above diagram illustrates the workflow that we will be using in this course. It is a tailored
version of the Analysis and Design core workflow of the Rational Unified Process. This course will
be presented using the above workflow as a framework. This is to aid in presentation, and does not
hinder the concepts from being applicable in other process contexts.
Remember, for analysis and design, we start out with the use-case model and the supplementary
specifications from the Requirements workflow and end up with the design model that serves as an
abstraction of the source code.
The design activities are centered around the notion of architecture. The production and validation
of this architecture is the main focus of early design iterations. The architecture is an important
vehicle not only for developing a good design model, but also for increasing the quality of any model
built during system development.
The focus of this course is on the activities of the Designer. The Architect’s activities will be
discussed, but many of the architectural decisions will be “given”. The activities of the Database
Designer are considered out of scope for this course. Each of the Architect and Designer activities
will be addressed in individual course modules.

Architectural and Use Case Analysis

Page 8

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 8

Architect

Supplementary
Specification

Use-Case Model

Mechanisms COTS Products
Databases
IPC Technology
etc.

“realized by client
classes using”

“responsible for”

“constrained by”

Required
Functionality

Implementation
Environment

Architectural Mechanisms: What Are They?

In order to better understand what an analysis mechanism is, we have to understand what an
architectural mechanism is.
An architectural mechanism is a strategic decision regarding common standards, policies, and
practices. They are the realization of topics that should be standardized on a project. Everyone on
the project should utilize these concepts in the same way and reuse the same mechanisms to
perform the operations.
An architectural mechanism represents a common solution to a frequently encountered problem.
They may be patterns of structure, patterns of behavior, or both. They are an important part of the
"glue" between the required functionality of the system, and how this functionality is realized given
the constraints of the implementation environment.
Support for architectural mechanisms needs to be “built in” to the architecture. Architectural
mechanisms are coordinated by the architect. The Architect chooses the mechanisms, validates
them by building or integrating them, verifies that they do the job, and then consistently imposes
them upon the rest of the design of the system.

Architectural and Use Case Analysis

Page 9

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 9

Architectural Mechanisms: Three Categories

! Architectural Mechanism Categories
" Analysis Mechanisms (conceptual)
" Design Mechanisms (concrete)
" Implementation Mechanisms (actual)

There are three categories of architectural mechanisms, where the only difference between them is
one of refinement.
Analysis mechanisms capture the key aspects of a solution in a way that is implementation
independent. They provide specific behaviors to a domain-related class or component, or
correspond to the implementation of cooperation between classes and/or components. They may
be implemented as a framework. Examples include mechanisms to handle persistence, inter-
process communication, error or fault handling, notification, and messaging, to name a few.
Design mechanisms are more concrete. They assume some details of the implementation
environment, but are not tied to a specific implementation (as is an implementation mechanism).
Implementation mechanisms specify the exact implementation of the mechanism. Implementation
mechanisms are are bound to a certain technology, implementation language, vendor, etc.
In a design mechanism, some specific technology is chosen (ex. RDBMS vs. ODBMS), whereas in
an implementation mechanism, a VERY specific technology is chosen (Oracle vs. SYBASE).
The overall strategy for the implementation of analysis mechanisms must be built into the
architecture. This will be discussed in more detail in Architectural Design when design and
implementation mechanisms are discussed.

Architectural and Use Case Analysis

Page 10

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 10

Sample Analysis Mechanisms

! Persistency
! Communication (IPC and RPC)
! Message routing
! Distribution
! Transaction management
! Process control and synchronization (resource

contention)
! Information exchange, format conversion
! Security
! Error detection / handling / reporting
! Redundancy
! Legacy Interface

Analysis mechanisms provide specific behaviors to a domain-related class or component, or
correspond to the implementation of cooperation between classes and/or components.
A persistent object is one that logically exists beyond the scope of the program that created it.
Examples of communication mechanisms would include inter-process communication (IPC) and
inter-node communication (a.k.a. remote process communication or RPC). So with RPC, there is
both a communication and a distribution aspect.
Mechanisms are perhaps easier to discuss when one talks about them as ‘patterns’ that are applied
to the problem. So the inter-process communication pattern (i.e. “the application is partitioned into a
number of communicating processes”) interacts with the distribution pattern (i.e. “the application is
distributed across a number of nodes”) to produce the RPC pattern (i.e. “the application is
partitioned into a number of processes, which are distributed across a number of nodes”) which
provides us a way to implement remote IPC.
Some examples of analysis mechanisms are listed on this slide. This list is not meant to be
exhaustive.

Architectural and Use Case Analysis

Page 11

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 11

Analysis Mechanism Characteristics

! Persistency
" Granularity
" Volume
" Duration
" Access mechanism
" Access frequency (creation/deletion, update, read)
" Reliability

! Communication
" Latency
" Synchronicity
" Message Size
" Protocol

Analysis mechanism characteristics capture some non-functional requirements of the system.
Persistency: For all classes whose instances may become persistent, we need to identify:
•Granularity: Range of size of the persistent objects
•Volume: Number of objects to keep persistent
•Duration: How long to keep persistent objects
•Access mechanism: How is a given object uniquely identified and retrieved?
•Access frequency: Are the objects more or less constant; are they permanently updated?
•Reliability: Shall the objects survive a crash of the process; the processor; or the whole system?
(Inter-process) Communication: For all model elements which needs to communicate with
objects, components or services executing in other processes or threads, we need to identify:
•Latency: How fast must processes communicate with another?
•Synchronicity: Asynchronous communication
•Size of message: A spectrum might be more appropriate than a single number.
•Protocol, flow control, buffering, and so on.

Architectural and Use Case Analysis

Page 12

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 12

Analysis Mechanism Characteristics (cont.)

! Legacy interface
" Latency
" Duration
" Access mechanism
" Access frequency

! Security
" Data granularity
" User granularity
" Security rules
" Privilege types

! etc.

For security:
•Data granularity: Package-level, Class-level, attribute level
•User granularity: Single Users, Roles/Groups
•Security Rules: Based on value of data, on algorithm based on data, algorithm based on user and
data
•Privilege Types: Read, Write, Create, Delete, perform some other operation

Architectural and Use Case Analysis

Page 13

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 13

Example: Course Registration Analysis Mechanisms

! Persistence
! Distribution
! Security
! Legacy Interface

The above are the selected analysis mechanisms for the Course Registration System.
Persistency: A means to make an element persistent (i.e., exist after the application that created it
ceases to exist).
Distribution: A means to distribute an element across existing nodes of the system.
Security: A means to control access to an element.
Legacy Interface: A means to access a legacy system with an existing interface.
These are also documented in the Payroll Architecture Handbook, Architectural Mechanisms
section.

Architectural and Use Case Analysis

Page 14

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 14

Identify Key Abstractions

! Define preliminary analysis classes (sources)
" Domain knowledge
" Requirements
" Glossary
" Domain Model, or the Business Model (if exists)

! Define analysis class relationships
! Model analysis classes and relationships on

Class Diagrams
" Include brief description of analysis class

! Map analysis classes to necessary analysis
mechanisms

Requirements and business modeling activities usually uncover key abstractions that the system
must be able to handle. Because of the work already done, there is no need to repeat the
identification work again during Use-Case Analysis. To take advantage of existing knowledge,
identify preliminary analysis classes on the basis of general knowledge of the system, such as the
Requirements, the Glossary, and in particular, the Domain Model, or the Business Model, if you
have one. From the UML User’s Guide by Booch et al: The Business Model “establishes an
abstraction of the organization” and the Domain Model “establishes the context of the system”.
While defining the initial analysis classes, you can also define any relationships that exist between
them. The relationships are those that support the basic definitions of the abstractions. The
objective is not to develop a complete class model at this point, but just to define some key
abstractions and basic relationships to “kick off” the analysis effort and reduce any duplicate effort
that may result when different teams analyze the individual use cases. Relationships defined at this
point reflect the semantic connections between the defined abstractions, not the relationships
necessary to support the implementation and required communication amongst abstractions.
The analysis classes identified at this point will probably change and evolve during the course of the
project. The purpose of this step is not to identify a set of classes that will survive throughout design,
but to identify the key abstractions the system must handle. Don't spend much time describing
analysis classes in detail at this initial stage, because there is a risk that you identify classes and
relationships that are not actually needed by the use cases. Remember that you will find more
analysis classes and relationships when looking at the use cases.

Architectural and Use Case Analysis

Page 15

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 15

CourseCourseCatalog

Professor

CourseOffering

Student

Schedule

Example: Key Abstractions

Professor - A person teaching classes at the university.
Student - A person enrolled in classes at the university.
Schedule - The courses a student has enrolled in for a semester.
CourseCatalog - Unabridged catalog of all courses offered by the university.
CourseOffering - A specific offering for a course, including days of the week and times.
Course - A class offered by the university.

Architectural and Use Case Analysis

Page 16

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 16

Patterns and Frameworks

! Pattern
" A common solution to a common problem in a

context
! Analysis/Design Pattern

" A solution to a narrowly-scoped technical problem
" A fragment of a solution, or a piece of the puzzle

! Framework
" Defines the general approach to solving the

problem
" Skeletal solution, whose details may be

analysis/design patterns

The selection of the upper-level layers may be affected by the choice of an architectural pattern or
framework. Thus, it is important to define what these terms mean.
A pattern codifies specific knowledge collected from experience. Patterns provide examples of how
good modeling solves real problems, whether you come up with it yourself or you reuse someone
else’s. Design patterns are discussed in more detail on the next slide.
Frameworks differ from analysis and design patterns in their scale and scope. Frameworks
describe a skeletal solution to a particular problem which may lack many of the details, which may
be filled in by applying various analysis and design patterns.
A framework is a micro-architecture that provides an incomplete template for applications within a
specific domain. Architectural frameworks provide the context in which the components run. They
provide the infrastructure (plumbing, if you will) that allows the components to co-exist and perform
in predictable ways. These frameworks may provide communication mechanisms, distribution
mechanisms, error processing capabilities, transaction support, etc.
Frameworks may range in scope from persistence frameworks which describe the workings of a
fairly complex but fragmentary part of an application, to domain-specific frameworks which are
intended to be customized (such as Peoplesoft, SanFransisco, Infinity, SAP). SAP is a framework
for manufacturing and finance.

Architectural and Use Case Analysis

Page 17

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 17

Parameterized
collaboration

Structural Aspect Behavioral Aspect

Pattern Name

Template
Parameters

Design Patterns

! A design pattern is a solution to a common
design problem
" Describes a common design problem
" Describes the solution to the problem
" Discusses the results and trade-offs of applying

the pattern
! Design patterns provide the capability to reuse

successful designs

We will look at a number of design patterns throughout this course. Thus, it is important to define
what a design pattern is up front.
Design patterns are being collected and cataloged in a number of publications and mediums. You
can use design patterns to solve issues in your design without “reinventing the wheel”. You can
also use design patterns to validate and verify your current approaches.
Using design patterns can lead to more maintainable systems, and increase productivity. They
provide excellent examples of good design heuristics, and design vocabulary. In order to use
design patterns effectively, you should become familiar with some common design patterns and the
issues that they mitigate.
A design pattern is modeled in the UML as a parameterized collaboration. Thus it has a structural
aspect and a behavioral aspect. The structural part is the classes whose instances implement the
pattern, and their relationships (the static view). The behavioral aspect describes how the instance
collaborate (e.g., send messages to each other) to implement the pattern (the dynamic view).
A parameterized collaboration is a template for a collaboration. The Template Parameters are what
are used to adapt the collaboration for a specific usage. These parameters may be bound to
different sets of abstractions, depending on how they are applied in the design.

Architectural and Use Case Analysis

Page 18

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 18

Architectural Patterns

! Layers
! Model-view-controller (M-V-C)
! Pipes and filters
! Blackboard

Architectural Analysis is where you consider architectural patterns, as this choice affects the high-
level organization of your object model.
Layers: The Layers pattern is where an application is decomposed into different levels of
abstraction. The layers range from application-specific layers at the top to
implementation/technology-specific layers on the bottom.
Model-View-Controller: The MVC pattern is where an application is divided into three partitions:
The Model which is the business rules and underlying data, the View which is how information is
displayed to the user, and the Controllers which process the user input.
Pipes and Filters: In the Pipes and Filters pattern, data is processed in streams that flow through
pipes from filter to filter. Each filter is a processing step.
Blackboard: The Blackboard pattern is where independent specialized applications collaborate to
derive a solution, working on a common data structure.
Architectural patterns can work together (e.g., more than one architectural pattern can be present in
any one software architecture).
The architectural patterns listed above imply certain system characteristics, performance
characteristics, and process and distribution architectures. Each solves certain problems but also
poses unique challenges. For this course we will concentrate on the Layers architectural pattern.

Architectural and Use Case Analysis

Page 19

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 19

Typical Layering Approach

General
functionality

Specific
functionality

Layering represents an ordered grouping of functionality, with the application-specific located in the
upper layers, functionality that spans application domains in the middle layers, and functionality
specific to the deployment environment at the lower layers.
Packages should be organized into layers with application-specific packages located in the upper
layers of the architecture, hardware and operating-specific packages located in the lower layers of
the architecture, and general-purpose services occupying the middleware layers. The advantage of
partitioning in this way is that it provides a clear separation of concerns. By separating application
(e.g., GUI) services from other services, the system’s user interface can be changed without
impacting the rest of the application. Similarly, by separating business services from other services,
it’s easier to change the business rules of your system with minimal impact to the rest of your
system. Such separation of concerns results in more resilient systems.

Architectural and Use Case Analysis

Page 20

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 20

Layers: How Do We Find Them?

! Level of abstraction
" Group elements at the same level of abstraction

! Separation of concerns
" Group like things together
" Separate disparate things
" Application vs. Domain model elements

! Resiliency
" Loose coupling
" Concentrate on encapsulating change
" User interface, business rules, and retained data

tend to have a high potential for change

Layers are used to encapsulate conceptual boundaries between different kinds of services and
provide useful abstractions which makes the design easier to understand.
When layering, you should concentrate on grouping things that are similar together, as well as
encapsulating change.
The number and composition of layers is dependent upon the complexity of both the problem
domain and the solution space. There is generally only a single application-specific layer. Domains
in which previous systems have been built, or in which large systems are composed in turn of inter-
operating smaller systems, there is a strong need to share information between design teams. As a
result, the Business-specific layer is likely to partially exist and may be structured into several layers
for clarity. Solution spaces which are well-supported by middleware products and in which complex
system software plays a greater role will have well-developed lower layers, with perhaps several
layers of middleware and system software.
Remember, in Architectural Analysis, we are concentrating on the upper-level layers (the
application- and business-specific layers). The lower level layers (infrastructure and vendor-specific
layers) will be defined in Architectural Design.

Architectural and Use Case Analysis

Page 21

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 21

<<layer>>
Package Name

Modeling Architectural Layers

! Architectural layers can be modeled using
stereotyped packages

! <<layer>> stereotype

Layers can be represented in Rose as packages with the <<layer>> stereotype. The layer
descriptions can be included in the documentation field of the specification of the package.

Architectural and Use Case Analysis

Page 22

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 22

Application
<<layer>>

Business
Services

<<layer>>

Example: High-Level Organization of the Model

The above example includes the application- and business- specific layers for the Course
Registration System.
The Application layer contains application-specific design elements.
We expect that multiple applications will share some key abstractions and common services.
These have been encapsulated in the Business Services layer, that is accessible to the Application
layer. The Business Services layer contains business-specific elements that are used in several
applications.

Architectural and Use Case Analysis

Page 23

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 23

<<boundary>>

<<boundary>><<control>>

<<entity>>

<<entity>>

Find Classes From Use-Case Behavior

! The complete behavior of a use case has to
be distributed to analysis classes

The technique for finding analysis classes described in this module uses three different
perspectives of the system to drive the identification of candidate classes. The three perspectives
are that of the boundary between the system and its actors, the information the system uses, and
the control logic of the system. The use of stereotypes to represent these perspectives (e.g.,
boundary, control and entity) results in a more robust model because they isolate those things most
likely to change in a system: the interface/environment, the control flow and the key system entities.
These stereotypes are conveniences used during analysis that disappear in design.
Identification of classes means just that: they should be identified, named, and described briefly in a
few sentences.
The different stereotypes are discussed in more detail throughout this module.

Architectural and Use Case Analysis

Page 24

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 24

<<control>>

<<boundary>>

<<entity>>

System
boundary

Use-case
behavior
coordination

System
information

What is an Analysis Class?

Analysis classes represent an early conceptual model for ‘things in the system which have
responsibilities and behavior’. Analysis classes are used to capture a ‘first-draft’, rough-cut of the
object model of the system.
Analysis classes handle primarily functional requirements, and model objects from the problem
domain. Analysis classes can be used to represent "the objects we want the system to support,"
without taking a decision on how much of them to support with hardware and how much with
software.
There are three aspects of the system that are likely to change: the boundary between the system
and its actors, the information the system uses, and the control logic of the system. In an effort to
isolate the parts of the system that will change, different types of analysis classes are identified,
each with a “canned” set of responsibilities: boundary, entity and control classes. Stereotypes may
be defined for each type. These distinctions are used during analysis, but disappear in design.
The different types of analysis classes can be represented using different icons or with the name of
the stereotype in guillemets (<< >>): <<boundary>>, << control>>, <<entity>>.
Each of these types of analysis classes are discussed on the following slides.

Architectural and Use Case Analysis

Page 25

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 25

Use Cases Analysis
Classes

Source
Code

ExecDesign
Elements

Use-Case Analysis

Analysis Classes: A First Step Towards Executables

Finding a candidate set of roles is the first step in the transformation of the system from a mere
statement of required behavior to a description of how the system will work
The analysis classes, taken together, represent an early conceptual model of the system. This
conceptual model evolves quickly and remains fluid for some time as different representations and
their implications are explored. Formal documentation can impede this process, so be careful how
much energy you expend on maintaining this ‘model’ in a formal sense; you can waste a lot of time
polishing a model which is largely expendable. Analysis classes rarely survive into the design
unchanged. Many of them represent whole collaborations of objects, often encapsulated by
subsystems.
Analysis classes are 'proto-classes', which are essentially "clumps of behavior". These analysis
classes are early conjectures of the composition of the system; they rarely survive intact into
implementation. Many of the analysis classes morph into something else later on (subsystems,
components, split classes, combined classes). They provide us with a way of capturing the required
behaviors in a form that we can use to explore the behavior and composition of the system.
Analysis classes allow us to "play" with the distribution of responsibilities, re-allocating, as
necessary.

Architectural and Use Case Analysis

Page 26

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 26

Environment Dependent

<<boundary>>
Analysis class
stereotype

What is a Boundary Class?

! Intermediates the interface to something
outside the system

! Several Types
" User interface classes
" System interface classes
" Device interface classes

! One boundary class per actor/use case pair

A boundary class intermediates the interface to something outside the system. Boundary class
insulate the system from changes in the surroundings (changes in interfaces to other systems,
changes in user requirements, etc.), keeping these changes from affecting the rest of the system.
A system may have several types of boundary classes:
User interface classes - Classes which intermediate communication with human users of the
system.
System interface classes - Classes which intermediate communication with other systems. A
boundary class which communicates with an external system is responsible for managing the
dialogue with the external system; it provides the interface to that system for the system being built.
Device interface classes - Classes which provide the interface to devices which detect external
events. These boundary classes capture the responsibilities of the device or sensor.
One recommendation for the initial identification of boundary classes is one boundary class per
actor/use-case pair.

Architectural and Use Case Analysis

Page 27

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 27

Model interaction between the system and its environment

Customer

<<boundary>>

<<boundary>>

<<control>>
<<boundary>>

<<entity>> <<entity>>

The Role of a Boundary Class

A boundary class is a class used to model interaction between the system's surroundings and its
inner workings. Such interaction involves transforming and translating events and noting changes in
the system presentation (such as the interface).
Boundary classes model the parts of the system that depend on its surroundings. Entity classes and
control classes model the parts that are independent of the system's surroundings. Thus, changing
the GUI or communication protocol should mean changing only the boundary classes, not the entity
and control classes.
Actors can only communicate with boundary classes.
Boundary classes also make it easier to understand the system because they clarify the system's
boundaries. They aid design by providing a good point of departure for identifying related services.
For example, if you identify a printer interface early in the design, you will soon see that you must
also model the formatting of printouts.
A boundary object (an instance of a boundary class) can outlive a use-case instance if, for example,
it must appear on a screen between the performance of two use cases. Normally, however,
boundary objects live only as long as the use-case instance.

Architectural and Use Case Analysis

Page 28

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 28

Course Catalog SystemRegister for CoursesStudent

<<boundary>>
RegisterForCoursesForm

<<boundary>>
CourseCatalogSystem

Example: Finding Boundary Classes

! One boundary class per actor/use case pair

The goal of analysis is to form a good picture of how the system is composed, not to design every
last detail. In other words, identify boundary classes only for phenomena in the system or for things
mentioned in the flow of events of the use-case realization.
Consider the source for all external events and make sure there is a way for the system to detect
these events.
One recommendation for the initial identification of boundary classes is one boundary class per
actor/use-case pair. This class can be viewed as having responsibility for coordinating the
interaction with the actor. This may be refined as a more detailed analysis is performed. This is
particularly true for window-based GUI applications, where there is typically one boundary class for
each window, or one for each dialog.
In the above example:
•The RegisterForCoursesForm contains a Student's "schedule-in-progress". It displays a list of
Course Offerings for the current semester from which the Student may select to be added to his/her
Schedule.
•The CourseCatalogSystem interfaces with the legacy system that provides the unabridged catalog
of all courses offered by the university. This class replaces the CourseCatalog abstraction originally
identified in Architectural Analysis.

Architectural and Use Case Analysis

Page 29

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 29

Concentrate on the responsibilities, not the details!

Guidelines: Boundary Class

! User Interface Classes
" Concentrate on what information is presented

to the user
" Do NOT concentrate on the UI details

! System and Device Interface Classes
" Concentrate on what protocols must be defined
" Do NOT concentrate on how the protocols will

be implemented

When identifying and describing analysis classes, be careful not too spend too much time on the
details. Analysis classes are meant to be a first cut at the abstractions of the system. They help to
clarify the understanding of the problem to be solved, and represent an attempt at an idealized
solution (analysis has been called “idealized design”).
User Interface Classes: Boundary classes may be used as “holding places” for GUI classes. The
objective is not to do GUI design in analysis, but to isolate all environment-dependent behavior.
The expansion, refinement and replacement of these boundary classes with actual user interface
classes (probably derived from purchased UI libraries) is a very important activity of Class Design,
and will be discussed in the Class Design module. Sketches, or screen dumps from a user-interface
prototype, may have been used during the Requirements workflow to illustrate the behavior and
appearance of the boundary classes. These may be associated with a boundary class. However,
only model the key abstractions of the system; do not model every button, list and widget in the GUI.
System and Device Interface Classes: If the interface to an existing system or device is already
well-defined, the boundary class responsibilities should be derived directly from the interface
definition. If there is a working communication with the external system or device, make note of it
for later reference during design.

Architectural and Use Case Analysis

Page 30

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 30

Glossary

Business-Domain Model

Environment Independent

<<entity>>

Analysis class
stereotype

Use Case

Architectural Analysis
Abstractions

What is an Entity Class?

! Key abstractions of the system

Entity objects represent the key concepts of the system being developed. Entity classes provide
another point of view from which to understand the system because they show the logical data
structure, which can help you understand what the system is supposed to offer its users.
Frequent sources of inspiration for entity classes are the:
•Glossary (developed during requirements)
•Business-domain model (developed during business modeling, if business modeling has been
performed)
•Use-case flow of events (developed during requirements)
•Key abstractions (identified in Architectural Analysis)
As mentioned earlier, sometimes there is a need to model information about an actor within the
system. This is not the same as modeling the actor (actors are external. by definition). These
classes are sometimes called “surrogates”.

Architectural and Use Case Analysis

Page 31

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 31

Store and manage information in the system

Customer

<<boundary>>

<<boundary>>

<<control>>
<<boundary>>

<<entity>> <<entity>>

The Role of an Entity Class

Entity classes represent stores of information in the system; they are typically used to represent the
key concepts the system manages. Entity objects (instances of entity classes) are used to hold and
update information about some phenomenon, such as an event, a person, or some real-life object.
They are usually persistent, having attributes and relationships needed for a long period, sometimes
for the life of the system.
The main responsibilities of entity classes are to store and manage information in the system.
An entity object is usually not specific to one use-case realization; sometimes, an entity object is not
even specific to the system itself. The values of its attributes and relationships are often given by an
actor. An entity object may also be needed to help perform internal system tasks. Entity objects can
have behavior as complicated as that of other object stereotypes. However, unlike other objects,
this behavior is strongly related to the phenomenon the entity object represents. Entity objects are
independent of the environment (the actors).

Architectural and Use Case Analysis

Page 32

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 32

Example: Finding Entity Classes

! Use use-case flow of events as input
! Key abstractions of the use case
! Traditional, filtering nouns approach

" Underline noun clauses in the use-case flow of
events

" Remove redundant candidates
" Remove vague candidates
" Remove actors (out of scope)
" Remove implementation constructs
" Remove attributes (save for later)
" Remove operations

Taking the use case flow of events as input, underline the noun phrases in the flow of events.
These are the initial candidate list of analysis classes. Then go through a series of filtering steps
where some candidate classes are eliminated. This is necessary due to the ambiguity of the
English language. The result of the filtering exercise is a list of candidate entity classes.
While the filtering approach does add some structure to what could be an ad-hoc means of
identifying classes, people generally filter as they go rather than blindly accepting all nouns and then
filtering.

Architectural and Use Case Analysis

Page 33

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 33

Student

CourseOffering

Schedule

Example: Candidate Entity Classes

! Register for Courses (Create Schedule)

The following are the definitions for each of the classes shown in the above diagram:
CourseOffering - A specific offering for a course, including days of the week and times.
Schedule - The courses a student has selected for the current semester.
Student - A person enrolled in classes at the university.
As mentioned earlier, sometimes there is a need to model information about an actor within the
system. This is not the same as modeling the actor (actors are external. by definition). These
classes are sometimes called “surrogates”.
For example, a course registration system maintains information about the student which is
independent of the fact that the student also plays a role as an actor of the system. This information
about the student that is stored in a ‘Student’ class is completely independent of the ‘actor’ role the
student plays; the Student class will exist whether or not the student is an actor to the system.

Architectural and Use Case Analysis

Page 34

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 34

Account
balance
name
number

Withdraw()
CreateStatement()

Checking

Withdraw()

Savings

GetInterest()
Withdraw()

Superclass
(parent)

Subclasses

Generalization
Relationship

Review: Generalization

! One class shares the
structure and/or
behavior of one or
more classes

! “Is-a-kind of”
relationship

! In analysis, use
sparingly

When identifying the analysis classes, especially the entity classes, inheritance relationships
amongst the classes may be identified.
As discussed in the Introduction to Object Orientation, generalization is a relationship among
classes where one class shares the structure and/or behavior of one or more classes.
Generalization refines a hierarchy of abstractions in which a subclass inherits from one or more
superclasses.
Generalization is an “is-a-kind of” relationship. You should always be able to say that your
generalized class ‘is a kind of’ the parent class.
In analysis, generalization should be used to model shared behavioral semantics only (i.e.,
generalization that passes the “is-a” test). Generalization to promote and support reuse will be
defined in design. In analysis, the generalization should be used to reflect shared
definitions/semantics and promote “brevity of expression” (i.e., the use of generalization makes the
definitions of the abstractions easier to document and understand).
When generalization is found, a common super-class is created to contain the common attributes,
associations, aggregations, and operations. The common behavior is removed from the classes
which are to become sub-classes of the common super-class. A generalization relationship is drawn
from the sub-class to the super-class.

Architectural and Use Case Analysis

Page 35

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 35

Finding Generalization: Generalization of Classes

Savings Checking
Stock

Bond
RealEstate Asset

RealEstate

Savings

BankAccount

Checking Stock

Security

Bond

More general

You may apply generalization when you have a set of classes that share some semantics and
behavior. The shared semantics and behavior are included in the base class, the subclasses inherit
from that base class, and the unique semantics and behavior are included in the subclasses.
General properties are placed in the upper part of the inheritance hierarchy, and special properties
lower down.

Architectural and Use Case Analysis

Page 36

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 36

Finding Generalization: Specialization of Classes

Asset

Asset

RealEstate

Savings

BankAccount

Checking Stock

Security

Bond
More specific

You may apply generalization when you have a class with very general semantics and behavior,
and you want to also model more specialized versions of the more general class. As with the
previous example, the shared semantics and behavior are included in the base class, the
subclasses inherit from the base class, and the unique semantics and behavior are included in the
subclasses.
More specialized properties are placed in the lower part of the inheritance hierarchy.

Architectural and Use Case Analysis

Page 37

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 37

Student
name
address

FulltimeStudent

studentID

gradDate

ParttimeStudent

maxNumCourses

Part-timeStudent
name
address

numberCourses

Full-timeStudent
name
address
studentID
gradDate

Without
Generalization

With
Generalization

studentID

Example: Generalization (Shared Semantics)

In the Course Registration System, there are two classifications of students, full- and part-time.
Full time students have an expected graduation date but part time students do not
Part time students may take a maximum of three courses where there is no maximum for
full time students

Generalization can be used to model the common and unique semantics between these
classifications.

Architectural and Use Case Analysis

Page 38

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 38

Use Case

Use-case dependent, Environment independent

<<control>>

Analysis class
stereotype

What is a Control Class?

! Use-case behavior coordinator
! One control class per use case

Control classes provide coordinating behavior in the system. The system can perform some use
cases without control classes (just using entity and boundary classes) - particularly use cases that
involve only the simple manipulation of stored information. More complex use cases generally
require one or more control classes to coordinate the behavior of other objects in the system.
Examples of control classes include transaction managers, resource coordinators and error
handlers.
Control classes effectively decouple boundary and entity objects from one another, making the
system more tolerant of changes in the system boundary. They also decouple the use-case specific
behavior from the entity objects, making them more reusable across use cases and systems.
Control classes provide behavior that:
•Is surroundings-independent (does not change when the surroundings change)
•Defines control logic (order between events) and transactions within a use case. Changes little if
the internal structure or behavior of the entity classes changes
•Uses or sets the contents of several entity classes, and therefore needs to coordinate the behavior
of these entity classes
•Is not performed in the same way every time it is activated (flow of events features several states)
One recommendation for the initial identification of control classes is one control class per use case.

Architectural and Use Case Analysis

Page 39

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 39

The Role of a Control Class

Coordinate the use-case behavior

Customer

<<boundary>>

<<boundary>>

<<control>>
<<boundary>>

<<entity>> <<entity>>

A control class is a class used to model control behavior specific to one or more use cases. Control
objects (instances of control classes) often control other objects, so their behavior is of the
coordinating type. Control classes encapsulate use-case-specific behavior.
The behavior of a control object is closely related to the realization of a specific use case. In many
scenarios, you might even say that the control objects "run" the use-case realizations. However,
some control objects can participate in more than one use-case realization if the use-case tasks are
strongly related. Furthermore, several control objects of different control classes can participate in
one use case. Not all use cases require a control object. For example, if the flow of events in a use
case is related to one entity object, a boundary object may realize the use case in cooperation with
the entity object. You can start by identifying one control class per use-case realization, and then
refine this as more use-case realizations are identified and commonality is discovered.
Control classes can contribute to understanding the system because they represent the dynamics of
the system, handling the main tasks and control flows.
When the system performs the use case, a control object is created. Control objects usually die
when their corresponding use case has been performed.

Architectural and Use Case Analysis

Page 40

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 40

Course Catalog SystemRegister for CoursesStudent

<<control>>
RegistrationController

Example: Finding Control Classes

! One control class per use case

One recommendation is to identify one control class per use case. Each control class is
responsible for orchestrating/controlling the processing that implements the functionality described
in the associated use case.
In the above example, the RegistrationController <<control>> class has been defined to orchestrate
the Register for Courses processing within the system.

Architectural and Use Case Analysis

Page 41

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 41

Student Course Catalog SystemRegister for Courses

Use-Case Model

Design Model

<<boundary>>
RegisterForCoursesForm

<<boundary>>
CourseCatalogSystem

<<control>>
RegistrationController

<<entity>>
Student

<<entity>>
Schedule

<<entity>>
CourseOffering

Example: Summary: Analysis Classes

For each use-case realization there is one or more class diagrams depicting its participating
classes, along with their relationships. These diagrams help to ensure that there is consistency in
the use-case implementation across subsystem boundaries. Such class diagrams have been called
“View of Participating Classes” diagrams (VOPC, for short).
The diagram on this slide shows the classes participating in the “Register for Courses” use case.
The Part-time Student and Full-time Student classes have been omitted for brevity (they both inherit
from Student). Class relationships will be discussed later in this module.

Architectural and Use Case Analysis

Page 42

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 42

Use Case Use-Case Realization
Sequence Diagrams Collaboration Diagrams

Distribute Use-Case Behavior to Classes

! For each use-case flow of events:
" Identify analysis classes
" Allocate use-case responsibilities to analysis

classes
" Model analysis class interactions in interaction

diagrams

You can identify analysis classes responsible for the required behavior by stepping through the flow
of events of the use case. In the previous step we outlined some classes, now it’s time to see
exactly where they are applied in the use-case flow of events.
In addition to the identified analysis classes, the interaction diagram should show interactions of the
system with its actors (the interactions should begin with an actor, since an actor always invokes the
use case). If you have several actor instances in the same diagram, try keeping them in the
periphery of the diagram.
Interactions BETWEEN actors should NOT be modeled. By definition, actors are external, and are
out of scope of the system being developed. Thus, you do not include interactions between actors
in your system model. If you need to model interactions between entities that are external to the
system you are developing (e.g., the interactions between a customer and an order agent for an
order processing system), those interactions are best included in a Business Model that drives the
System Model.
Guidelines for how to distribute behavior to classes is described on the next slide.

Architectural and Use Case Analysis

Page 43

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 43

Guidelines: Allocating Responsibilities to Classes

! Use analysis class stereotypes as a guide
" Boundary Classes

• Behavior that involves communication with
an actor

" Entity Classes
• Behavior that involves the data

encapsulated within the abstraction
" Control Classes

• Behavior specific to a use case or part of a
very important flow of events

(continued)

The allocation of responsibilities in analysis is a crucial and sometimes difficult activity, and these
stereotypes assist in that they provide a set of canned responsibilities that can be used to build a
robust system by isolating the parts of the system that are most likely to change: the interface
(boundary classes), the use-case flow-of-events (control classes) and the persistent data (entity
classes).

Architectural and Use Case Analysis

Page 44

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 44

Guidelines: Allocating Responsibilities to Classes (cont.)

! Who has the data needed to perform the
responsibility?
" One class has the data, put the responsibility with

the data
" Multiple classes have the data:

• Put the responsibility with one class and add a
relationship to the other

• Create a new class, put the responsibility in the
new class, and add relationships to classes
needed to perform the responsibility

• Put the responsibility in the control class, and add
relationships to classes needed to perform the
responsibility

A driving influence on where a responsibility should go is the location of the data needed to perform
the operation.
The best case is that there is one class that has all the information needed to perform the
responsibility. In that case, the responsibility goes with the data (after all, that’s one of the tenets of
OO -- data and operations together).
If this isn’t the case, the responsibility may need to be allocated to a “third party” class that has
access to the information needed to perform the responsibility. Classes and/or relationships may
need to be created to make this happen. Be careful when adding relationships -- all relationships
should be consistent with the abstractions they connect. Don’t just add relationships to support the
implementation without considering the overall affect on the model. Class relationships will be
discussed later in this module.
When a new behavior is identified, check to see if there is an existing class that has similar
responsibilities, reusing classes where possible. Only when sure that there is not an existing object
that can perform the behavior should you create new classes.

Architectural and Use Case Analysis

Page 45

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 45

1: PerformResponsibility

Client Object Supplier Object

Message

:Client :Supplier

Focus of Control

This is a
sample script.

Reflexive Message
Object Lifeline

1.1: PerformAnother
Responsibility

The Anatomy of Sequence Diagrams

Hierarchical Message
Numbering

A sequence diagram describes a pattern of interaction among objects, arranged in a chronological
order; it shows the objects participating in the interaction and the messages they send.
An object is shown as a vertical dashed line called the "lifeline". The lifeline represents the
existence of the object at a particular time. An object symbol is drawn at the head of the lifeline, and
shows the name of the object and its class separated by a colon and underlined.
A message is a communication between objects that conveys information with the expectation that
activity will ensue; a message is shown as a horizontal solid arrow from the lifeline of one object to
the lifeline of another object. For a reflexive message, the arrow starts and finishes on the same
lifeline. The arrow is labeled with the name of the message, and its parameters. The arrow may also
be labeled with a sequence number.
Focus of control represents the relative time that the flow of control is focused in an object,
thereby representing the time an object is directing messages. Focus of control is shown as narrow
rectangles on object lifelines.
Hierarchical numbering bases all messages on a dependent message. The dependent message
is the message whose focus of control the other messages originate in. For example, message 1.1
depends on message 1.
Scripts describe the flow of events textually.

Architectural and Use Case Analysis

Page 46

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 46

Example: Sequence Diagram

: Student
:

RegisterForCoursesForm
:

RegistrationController
: Schedule : Student

: Course Catalog
:

CourseCatalogSystem

A list of the available
course offerings for this
semester are displayed

Student wishes to
create a new
schedule

1. // create schedule()

1.2. // display course offerings()

1.1. // get course offerings()

1.1.1. // get course offerings(forSemester)

1.3. // display blank schedule()

At this, point the Submit Schedule subflow is executed.

2. // select 4 primary and 2 alternate offerings()

2.1. // create schedule with offerings()
2.1.1. // create with offerings()

A blank schedule
is displayed for the
students to select
offerings

2.1.2. // add schedule(Schedule)

1.1.1.1. // get course offerings()

The above example shows the object interactions to support the Register for Courses use case,
Create a Schedule subflow. Some responsibility allocation rationale is as follows:
The RegisterForCoursesForm knows what data it needs ton dispay and how to display it. It does
not know where to go to get it. That’s one of the RegistrationController’s responsibilities.
Only the RegisterForCoursesForm interacts with the Student actor.
The RegistrationController understands how Students and Schedules are related.
Only the CourseCatalogSystem class interacts with the external legacy Course Catalog System.
Note the inclusion of the actors. This is important as it explicitly models what elements
communicate with the “outside world”.

Architectural and Use Case Analysis

Page 47

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 47

Example: Sequence Diagram (cont.)
: CourseOffering

: Student
: RegisterForCoursesForm : RegistrationController : Schedule : Student:

PrimaryScheduleOfferingInfob

Repeat for all primary
course offerings.

An attempt is made
to register the
student for all
selected course
offerings

1. // submit schedule()

1.1. // submit schedule()

1.1.2. // submit()

1.1.2.3. // still open?()

1.1.2.5. // add student(Schedule)

1.1.2.2. // has pre-requisites(CourseOffering)

1.1.2.4. // any conflicts?()

1.1.2.1. // is selected?()

1.1.2.6. // mark as enrolled in()

1.1.1. // save()

[has pre-requisites, course offering open,
and no schedule conflicts]

[is selected]

The above is the interaction diagram for the Submit Schedule subflow. It describes what occurs
when a Student requests that an entered schedule be submitted. When a Schedule is submitted,
an attempt is made to register the student for all selected primary courses.
Note the allocation of responsibility. The Schedule has been given the responsibility for performing
all of the processing associated with submitting a Schedule. It orchestrates a series of checks
(Student has pre-requisites, the course offering is still open, and the Student does not have any
schedule conflicts), prior to enrolling the Student in the Course Offering.
Note the addition of the new class, PrimaryScheduleOfferingInfo. This class was needed to
maintain the status of a particular Course Offering on a Schedule (as well as the associated grade).
This will be discussed in more detail later in the module.

Architectural and Use Case Analysis

Page 48

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 48

1: PerformResponsibility

Client Object

Supplier Object

Message

Link

:Client

:Supplier

The Anatomy of Collaboration Diagrams

A collaboration diagram describes a pattern of interaction among objects; it shows the objects
participating in the interaction by their links to each other and the messages that they send to each
other.
An object is represented in three ways: Objectname:Classname, ObjectName, and :ClassName.
A link is a relationship among objects across which messages can be sent. In collaboration
diagrams, a link is shown as a solid line between two objects. An object interacts with, or navigates
to, other objects through its links to these objects. A link can be an instance of an association, or it
can be anonymous, meaning that its association is unspecified.
A message is a communication between objects that conveys information with the expectation that
activity will ensue. In collaboration diagrams, a message is shown as a labeled arrow placed near a
link. This means that the link is used to transport, or otherwise implement the delivery of the
message to the target object. The arrow points along the link in the direction of the target object (the
one that receives the message). The arrow is labeled with the name of the message, and its
parameters. The arrow may also be labeled with a sequence number to show the sequence of the
message in the overall interaction. Sequence numbers are often used in collaboration diagrams,
because they are the only way of describing the relative sequencing of messages. A message can
be unassigned, meaning that its name is a temporary string that describes the overall meaning of
the message. You can later assign the message by specifying the operation of the message's
destination object. The specified operation will then replace the name of the message.

Architectural and Use Case Analysis

Page 49

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 49

Example: Collaboration Diagram

: Student

: RegisterForCoursesForm

: RegistrationController

:
Schedule

: Student

: CourseCatalogSystem

1.2. // display course offerings()
1.3. // display blank schedule()

: Course Catalog

1. // create schedule()
2. // select 4 primary and 2 alternate offerings()

1.1. // get course offerings()
2.1. // create schedule with offerings()

2.1.1. // create with offerings()

1.1.1. // get course offerings(forSemester)

2.1.2. // add schedule(Schedule)

1.1.1.1. // get course offerings()

The above example shows the collaboration of objects to support the Register for Courses use
case, Create a Schedule subflow. It is the “collaboration diagram equivalent” of the sequence
diagram shown earlier.

Architectural and Use Case Analysis

Page 50

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 50

Example: Collaboration Diagram (cont.)

:
CourseOffering

: Student

:
RegistrationController

:
Schedule

: Student

:
PrimaryScheduleOfferingInfob

1.1.2.4. // any conflicts?()

: RegisterForCoursesForm
1. // submit schedule()

1.1. // submit schedule()

1.1.2. // submit()
1.1.1. // save() 1.1.2.3. // still open?()

1.1.2.5. // add student(Schedule)

1.1.2.1. // is selected?()
1.1.2.6. // mark as enrolled in()

1.1.2.2. // has pre-requisites(CourseOffering)

The above example shows the collaboration of objects to support the Register for Courses use
case, Submit Schedule subflow. It is the “collaboration diagram equivalent” of the sequence
diagram shown earlier.

Architectural and Use Case Analysis

Page 51

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 51

Alternate Flow 4 Alternate Flow 5 Alternate Flow n

Alternate Flow 1 Alternate Flow 2 Alternate Flow 3

AF1

AF2

AF3

Basic Flow

One Interaction Diagram Not Good Enough

You should model most of the flows of events to make sure that all requirements on the operations
of the participating classes are identified. Start with describing the basic flow, which is the most
common or most important flow of events. Then describe variants such as exceptional flows. You
do not have to describe all the flows of events, as long as you employ and exemplify all operations
of the participating objects. Very trivial flows can be omitted, such as those that concern only one
object.
Examples of exceptional flows include the following.
•Error handling. What should the system do if an error is encountered?
•Time-out handling. If the user does not reply within a certain period, the use case should take some
special measures
•Handling of erroneous input to the objects that participate in the use case (e.g., incorrect user
input)
Examples of optional flows include the following:
•The actor decides-from a number of options-what the system is to do next
•The subsequent flow of events depends on the value of stored attributes or relationships
•The subsequent flow of events depends on the type of data to be processed
You can use either collaboration and sequence diagrams.

Architectural and Use Case Analysis

Page 52

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 52

Collaboration Diagrams Vs Sequence Diagrams

! Collaboration
Diagrams
" Show relationships in

addition to interactions
" Better for visualizing

patterns of
collaboration

" Better for visualizing all
of the effects on a
given object

" Easier to use for
brainstorming sessions

! Sequence Diagrams
" Show the explicit

sequence of messages
" Better for visualizing

overall flow
" Better for real-time

specifications and for
complex scenarios

Sequence diagrams and collaboration diagrams express similar information, but show it in different
ways.
Collaboration diagrams emphasize the structural collaboration of a society of objects and provide
a clearer picture of the patterns of relationships and control that exist amongst the objects
participating in a use case. Collaboration diagrams show more structural information (i.e., the
relationships among objects). Collaboration diagrams are better for understanding all the effects on
a given object and for procedural design.
Sequence diagrams show the explicit sequence of messages and are better for real-time
specifications and for complex scenarios. A sequence diagram includes chronological sequences,
but does not include object relationships. Sequence numbers are often omitted in sequence
diagrams, in which the physical location of the arrow shows the relative sequence. On sequence
diagrams, the time dimension is easier to read, the operations and parameters are easier to
present, and the larger number of objects are easier to manage than in collaboration diagrams.
Both sequence and collaboration diagrams allow you to capture semantics of the use-case flow of
events; they help identify objects, classes, interactions, and responsibilities; and they help validate
the architecture.

Architectural and Use Case Analysis

Page 53

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 53

(continued)

Exercise: Use-Case Analysis, Part 1

! Given the following:
" Use-Case Model, especially the use-case flows

of events
" Key abstractions/classes

The goal of this exercise is to identify classes that must collaborate to perform a use case, allocate
the use-case responsibilities to those classes, and diagram the collaborations.
Good sources for the analysis classes are the Glossary and any analysis classes defined during
Architectural Analysis.
References to the givens:
•Use-Case Model: Payroll Requirements Document, Use-Case Model section
•Key abstractions: Payroll Exercise Solution, Architectural Analysis section.

Architectural and Use Case Analysis

Page 54

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 54

(continued)

Exercise: Use-Case Analysis, Part 1 (cont.)

! Identify the following for a particular use
case:
" The analysis classes, along with their:

• Brief descriptions
• Stereotypes
• Responsibilities

" The collaborations needed to implement the
use case

When identifying analysis classes from the use-case flows of events, use the analysis stereotypes
to guide you (boundary, control, and entity).
Be sure to define the identified classes. These definitions become very important as you start to
allocate responsibilities to those classes.

Architectural and Use Case Analysis

Page 55

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 55

Exercise: Use-Case Analysis, Part 1 (cont.)

! Produce the following for a particular use
case:
" Use-case realization interaction diagram for at

least one of the use-case flows of events

Start with diagramming the basic flow and then do the other subflows if you have time.
The interaction diagrams may be collaboration or sequence diagrams. On an interaction diagram,
sending a message to an object means that you are allocating responsibility for performing that task
to the object.
Be sure to use the “//” naming convention for responsibilities.
References to sample diagrams within the course that are similar to what should be produced are:
Use-case realization interaction diagram: Slide 35-36 or 38-39.

Architectural and Use Case Analysis

Page 56

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 56

! Supplement the Use-Case Descriptions
! For each use-case realization

" Find Classes from Use-Case Behavior
" Distribute Use-Case Behavior to Classes

! For each resulting analysis class
" Describe Responsibilities
" Describe Attributes and Associations
" Qualify Analysis Mechanisms

! Unify Analysis Classes
! Checkpoints

Use-Case Analysis Steps

At this point, analysis classes have been identified and use-case responsibilities have been
allocated to those classes. This was done on a use-case-by-use-case basis, with a focus primarily
on the use-case flows of events. Now it is time to turn our attention to each of the analysis classes
and see what each of the use cases will require of them. A class and its objects often participate in
several use-case realizations. It is important to coordinate all the requirements on a class and its
objects that different use-case realizations may have.
The ultimate objective of these class-focused activities is to to document what the class knows and
what the class does. The resulting Analysis Model gives you a big picture and a visual idea of the
way responsibilities are allocated and what such an allocation does to the class collaborations.
Such a view allows the analyst to spot inconsistencies in the way certain classes are treated in the
system, for example, how boundary and control classes are used.
The purpose of “Describe Responsibilities” step is namely to describe the responsibilities of the
analysis classes.

Architectural and Use Case Analysis

Page 57

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 57

// PerformResponsibility

:Client :Supplier

Supplier

// PerformResponsibility

Interaction Diagram

Class Diagram

Describe Responsibilities

! What are responsibilities?
! How do I find them?

A responsibility is a statement of something an object can be asked to provide. Responsibilities
evolve into one (or more) operations on classes in design; they can be characterized as:
•The actions that the object can perform
•The knowledge that the object maintains and provides to other objects
Responsibilities are derived from messages on interaction diagrams. For each message, examine
the class of the object to which the message is sent. If the responsibility does not yet exist, create a
new responsibility that provides the requested behavior.
Other responsibilities will derive from non-functional requirements. When you create a new
responsibility, check the non-functional requirements to see if there are related requirements which
apply. Either augment the description of the responsibility, or create a new responsibility to reflect
this.
Analysis class responsibilities can be documented in one of two ways:
•As “analysis” operations.
When this approach is chosen, it is important that some sort of naming convention be used. This
naming convention indicates that the operation is being used to describe the responsibilities of the
analysis class and that these “analysis” operations WILL PROBABLY change/evolve in design).
•Textually, in the description of the analysis classes.
For the OOAD course example, we will use the “analysis” operation approach. The naming
convention that will be used is that the “analysis” operation name will be preceded by '//'.

Architectural and Use Case Analysis

Page 58

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 58

RegisterForCoursesForm

// submit schedule()
// display course offerings()
// display schedule()
// create schedule()
// select 4 primary and 2 alternate offerings()
// display blank schedule()

<<boundary>>

PrimaryScheduleOfferingInfo
grade

// is enrolled in?()
// mark as enrolled in()

<<entity>>

CourseCatalogSystem

// get course offerings()

<<boundary>>RegistrationController

// get course offerings()
// submit schedule()
// create schedule with offerings()

<<control>>

Student

// add schedule()
// has pre-requisites()

<<entity>>

ScheduleOfferingInfo
status

// mark as selected()
// mark as cancelled()
// is selected?()

<<entity>>

CourseOffering
number : String = "100"
startTime : Time
endTime : Time
days : Enum

// add student()
// still open?()
// save()

<<entity>>

Schedule

// create with offerings()
// submit()
// save()

<<entity>>

Example: View of Participating Classes (VOPC) Class Diagram

The View of Participating Classes (VOPC) class diagram contains the classes whose instances
participate in the use-case realization interaction diagrams, as well as the relationships required to
support the interactions. We will discuss the relationships later in this module. Right now, we are
most interested in what classes have been identified, and what responsibilities have been allocated
to those classes.
The generalization relationship has been shown because it is important to understand the
relationship between the two new classes, ScheduleOfferingInfo and PrimaryScheduleOfferingInfo.
The PrimaryScheduleOfferingInfo class contains information about a primary CourseOffering that is
schedule-specific. For example, the grade the student received in the CourseOffering, as well as
the status of the CourseOffering on the Schedule (e.g., has the CourseOffering been enrolled in yet,
or has it just been selected on the Schedule).
The ScheduleOfferingInfo class was created because status will need to be maintained for alternate
CourseOfferings, as well as primary CourseOfferings, with the only difference being that Students
can only be enrolled in and receive a grade in a primary CourseOffering. Thus, generalization was
used to model the commonality amongst the different types of CourseOffering information.

Architectural and Use Case Analysis

Page 59

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 59

Maintaining Consistency: What to Look For

! In order of criticality
" Redundant responsibilities across classes
" Disjoint responsibilities within classes
" Class with one responsibility
" Class with no responsibilities
" Better distribution of behavior
" Class that interacts with many other classes

Examine classes to ensure they have consistent responsibilities. When a class’s responsibilities are
disjoint, split the object into two or more classes. Update the interaction diagrams accordingly.
Examine classes to ensure that there are not two classes with similar responsibilities. When classes
have similar responsibilities, combine them and update the interaction diagrams accordingly.
Sometimes you have to get back to a previous interaction diagram and redo it: a better distribution
of behavior may have become evident while you were working on another interaction diagram. It is
better (and easier) to change things now than later in design. Take the time to set the diagrams
right, but don’t get hung-up trying to optimize the class interactions.
A class with only one responsibility is not a problem, per se, but it should raise questions on why it
is needed. Be prepared to challenge and justify the existence of all classes.

Architectural and Use Case Analysis

Page 60

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 60

! Supplement the Use-Case Descriptions
! For each use-case realization

" Find Classes from Use-Case Behavior
" Distribute Use-Case Behavior to Classes

! For each resulting analysis class
" Describe Responsibilities
" Describe Attributes and Associations
" Qualify Analysis Mechanisms

! Unify Analysis Classes
! Checkpoints

Use-Case Analysis Steps

Now that we have defined the analysis classes and their responsibilities, and have an
understanding of how they need to collaborate, we can continue our documentation of the analysis
classes by describing their attributes and associations.
The purpose of “Describe Attributes and Operations” is to
•Identofy the other classes on which the analysis class depend
•Define the events in other analysis classes that the class must know about
•Define the information that the analysis class is responsible for maintaining

Architectural and Use Case Analysis

Page 61

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 61

Describe Attributes and Associations

! Define Attributes
! Establish Aggregations and Associations

In order to carry-out their responsibilities, classes frequently depend on other classes to supply
needed behavior. Associations document the inter-class dependencies and help us to understand
class coupling; better understanding of class coupling, and reduction of coupling where possible,
can help us build better, more resilient systems.

Architectural and Use Case Analysis

Page 62

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 62

ClassName
<<stereotype>>

Attribute : Type = InitValue
Attribute : Type = InitValue
Attribute : Type = InitValue

CourseOffering
<<entity>>

number :String=“100”
startTime : Time
endTime: Time
days: enumattribute

In analysis, do not spend
time on attribute signatures

Review: What is an Attribute?

Attributes are used to store information. Attributes are atomic things with no responsibilities.
The attribute name should be a noun that clearly states what information the attribute holds. The
description of the attribute should describe what information is to be stored in the attribute; this can
be optional when the information stored is obvious from the attribute name.
During analysis, the attribute types should be from the domain, and not adapted to the programming
language in use. For example, in the above diagram, enum will need to be replaced with a true
enumeration that describes the days the CourseOffering is offered (e.g., MWF, TR, etc.).

Architectural and Use Case Analysis

Page 63

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 63

Finding Attributes

! Properties/characteristics of identified
classes

! Information retained by identified classes
! “Nouns” that did not become classes

" Information whose value is the important thing
" Information that is uniquely "owned” by an

object
" Information that has no behavior

Sources of possible attributes: domain knowledge, requirements, glossary, domain model, business
model, etc.
Attributes are used instead of classes where :
•Only the value of the information, not it's location, is important
•The information is uniquely "owned" by the object to which it belongs; no other objects refer to the
information
•The information is accessed by operations which only get, set or perform simple transformations on
the information; the information has no "real" behavior other than providing its value
If, on the other hand, the information has complex behavior, or is shared by two or more objects the
information should be modeled as a separate class.
Attributes are domain dependent (an object model for a system, includes those characteristics that
are relevant for the problem domain being modeled).
Remember, the process is use-case-driven. Thus, all discovered attributes should support at least
one use case. For this reason, the attributes that are discovered are affected by what
functionality/domain being modeled.

Architectural and Use Case Analysis

Page 64

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 64

Review: What is an Association?

! Models a semantic connection among
instances

Simple
association

<<entity>>
Student

<<entity>>
Schedule

<<entity>>
CourseOffering

Reflexive
association

is a pre-requisite of

<<entity>>
Course

Association is a structural relationship

Associations represent structural relationships between objects of different classes, information that
must be preserved for some duration and not simply procedural dependency relationships (e.g., one
object has a permanent association to another object).
You can use associations to show that objects know about other objects. Sometimes, objects must
hold references to each other to be able to interact, for example send messages to each other; thus,
in some cases associations may follow from interaction patterns in sequence diagrams or
collaboration diagrams.
Most associations are simple (exist between exactly two classes), and are drawn as solid paths
connecting pairs of class symbols. Ternary relationships are also possible. Sometimes, a class
has an association to itself. This does not necessarily mean that an instance of that class has an
association to itself; more often, it means that one instance if the class has associations to other
instances of the same class.
An association may have a name that is placed on, or adjacent to the association path. The name of
the association should reflect the purpose of the relationship and be a verb phrase; the name of an
association can be omitted, particularly if role names are used (see next slide).
Avoid names like "has" and "contains", as they add no information about what the relationships are
between the classes.
In the above example, Students and CourseOfferings are related via the Schedule class. This is
because in the Course Registration System, Schedule is a first class citizen. Students are enrolled
in a CourseOffering if there is a relationship between the Student’s Schedule and the
CourseOffering.

Architectural and Use Case Analysis

Page 65

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 65

Review: What are Roles?

! The “face” that a class plays in the
association

Pre-requisites

Instructor

<<entity>>
CourseOffering

Department head

<<entity>>
Professor

<<entity>>
Department

<<entity>>
Course

Role Name

Each end of an association is a role specifying the face that a class plays in the association. Each
role must have a name, and the role names opposite a class must be unique. The role name should
be a noun indicating the associated object's role in relation to the associating object.
The use of association names and role names is mutually exclusive: one would not use both an
association name and a role name. For each association, decide which conveys more information.
The role name is placed next to the end of the association line of the class it describes.
In the case of self-associations, role names are essential to distinguish the purpose for the
association.
In the above example, the Professor participates in two separate association relationships, playing a
different role in each.

Architectural and Use Case Analysis

Page 66

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 66

CourseOffering
<<entity>>

Schedule
<<entity>>

primaryCourses

alternateCourses

CourseOffering
<<entity>>

Schedule
<<entity>> add student to

remove student from

Multiple associations must reflect multiple roles

Example: Multiple Associations

There can be multiple associations between the same two classes, but they should represent
distinct relationships, DIFFERENT ROLES; they should not be just for invoking different operations.
If there is more than one association between two classes then they MUST be named.
It is unusual to find more than one association between the same two classes. Occurrences of
multiple associations should be carefully examined.
To determine if multiple associations are appropriate, look at instances of the classes. If ClassA
and ClassB have 2 associations between them, Assoc1 and Assoc2. If an instance of ClassA has a
link with two SEPARATE instances of ClassB, then multiple associations are valid.
In the above example, the top diagram is an appropriate use of multiple associations, the bottom
diagram is not. In the valid case, two associations are required between Schedule and
CourseOffering as a Schedule can contain two kind of CourseOfferings, primary and alternate.
These must be distinguishable, so two separate associations are used. In the invalid case, the two
relationships represent two operations of CourseOffering, not two roles of CourseOffering.
Remember, Students and CourseOfferings are related via the Schedule class. Students are
enrolled in a CourseOffering if there is a relationship between the Student’s Schedule and the
CourseOffering.

Architectural and Use Case Analysis

Page 67

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 67

Review: Multiplicity

2..4

0..1

1..*

0..*

1

*

! Unspecified
! Exactly one
! Zero or more (many,

unlimited)

! One or more
! Zero or one (optional

scalar role)
! Specified range
! Multiple, disjoint

ranges
2, 4..6

For each role you can specify the multiplicity of its class, how many objects of the class can be
associated with one object of the other class.
Multiplicity is indicated by a text expression on the role. The expression is a comma-separated list of
integer ranges. A range is indicated by an integer (the lower value), two dots, and an integer (the
upper value). A single integer is a valid range.
During analysis, assume a multiplicity of 0..* (zero to many) unless there is some clear evidence of
something else. A multiplicity of zero implies that the association is optional; make sure you mean
this; if an object might not be there, operations which use the association will have to adjust
accordingly. Narrower limits for multiplicity may be specified (such as 2..4).
Within multiplicity ranges, probabilities may be specified. Thus, if the multiplicity is 0..*, is expected
to be between 10 and 20 in 85% of the cases, make note of it; this information will be of great
importance during design. For example, if persistent storage is to be implemented using a
relational database, narrower limits will help better organize the database tables.

Architectural and Use Case Analysis

Page 68

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 68

Multiplicity

0..4

0..2
primaryCourses

alternateCourses

0..*

0..*
0..*1

<<entity>>
Student

<<entity>>
Schedule <<entity>>

CourseOffering

Example: Multiplicity

A Student can have zero or more Schedules. It is zero when the Student has not registered for any
course offerings yet. It is more than one because the system retains schedules for multiple
semesters.
A Schedule is only associated with one Student.
A Schedule can contain up to four primary course offerings and up to two alternate course offerings.
A CourseOffering can appear on any number of Schedules, as either a primary course or as an
alternate course.
A CourseOffering does not have to appear on any Schedule.
Remember, Students and CourseOfferings are related via the Schedule class. Students are
enrolled in a CourseOffering if there is a relationship between the Student’s Schedule and the
CourseOffering.

Architectural and Use Case Analysis

Page 69

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 69

Bi-directional

Uni-directional

Class1 Class2

Class1 Class2

Review: Navigability

! Possible to navigate from an associating
class to the target class

The navigability property on a role indicates that it is possible to navigate from an associating class
to the target class using the association.
Navigability is indicated by an open arrow, which is placed on the target end of the association line
next to the target class (the one being navigated to). The default value of the navigability property is
true (e.g., associations are bi-directional, by default).
Note that usually arrows are suppressed for associations and aggregations with navigability in both
directions (e.g., when no arrowheads are shown, the association is assumed to be navigable in both
directions). Arrows are shown only for associations with one-way navigability.
The interaction diagrams can be used to identify the needed navigation between classes.
Navigability is inherently a design and implementation property, though it can be specified in
analysis, with the understanding that it may need to be refined in design (Class Design, to be
specific). In analysis, many associations are modeled as being bi-directional. During design, we
look at whether it is really necessary to navigate in both directions.

Architectural and Use Case Analysis

Page 70

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 70

2-way navigation

0..4

0..2

primaryCourses

alternateCourses

0..*

0..*

<<entity>>
Schedule

<<entity>>
CourseOffering

1-way navigation

1 1
<<boundary>>

RegisterForCoursesForm
<<control>>

RegistrationController

Example: Navigability

The top part of the above diagram demonstrates one-way navigation: A RegisterForCoursesForm
invokes a single RegistrationController that will process the registration for the current Student (the
Student that is building the current Schedule). The RegistrationController will never need to
communicate directly to the RegisterForCoursesForm.
The bottom part of the above diagram demonstrates two-way navigation: You can ask a Schedule
what CourseOfferings it contains and you can ask a CourseOffering what Schedules it appears on.
This is necessary, so that when a CourseOffering is cancelled, the appropriate Schedules can be
updated.

Architectural and Use Case Analysis

Page 71

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 71

Whole/aggregate part

0..4

0..2
primaryCourses

alternateCourses

0..*

0..*
0..*1<<entity>>

Student
<<entity>>
Schedule <<entity>>

CourseOffering

Review: What is Aggregation?

! A special form of association that models a
whole-part relationship between an
aggregate (the whole) and its parts

Aggregation is a stronger form of association which is used to model a whole-part relationship
between model elements. The whole/aggregate has an aggregation association to the its
constituent parts. A hollow diamond is attached to the end of an association path on the side of the
aggregate (the whole) to indicate aggregation.
Since aggregation is a special form of association, the use of multiplicity, roles, navigation, etc. is
the same as for association.
Sometimes, a class may be aggregated with itself. This does not mean that an instance of that
class is composed of itself (this would be silly), it means that one instance if the class is an
aggregate composed of other instances of the same class.
Some situations where aggregation may be appropriate:
•An object is physically composed of other objects (e.g. car being physically composed of an engine
and four wheels).
• An object is a logical collection of other objects (e.g., a family is a collection of parents and
children).
• An object physically contains other objects (e.g., an airplane physically contains a pilot).
In the above example, the relationship from Student to Schedule is modeled as an aggregation
because a Schedule is inherently tied to a particular Student. A Schedule outside of the context of a
Student makes no sense in this Course Registration System. The relationship from Schedule to
CourseOffering is an association because CourseOfferings may appear on multiple Schedules.

Architectural and Use Case Analysis

Page 72

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 72

When in doubt use association

association

aggregation

Class1 Class2

Class1 Class2

Association or Aggregation?

! Consideration
" Context, independent identity of Class2

Aggregation should be used only where the "parts" are incomplete outside the context of the whole.
If the classes can have independent identity outside the context provided by other classes, if they
are not parts of some greater whole, then the association relationship should be used.
When in doubt, an association is more appropriate. Aggregations are generally obvious. A good
aggregate should be a natural, coherent part of the model. The meaning of aggregates should be
simple to understand from the context. Choosing aggregation is only done to help clarify, it is not
something that is crucial to the success of the modeling effort.
The use of aggregation versus association is dependent on the application you are developing. For
example, if you are modeling a car dealership, the relationship between a car and its wheels might
be modeled as aggregation because the car always comes with wheels and the wheels are never
sold separately. However, if you are modeling a car parts store, you might model the relationship as
an association, as the car (the body) might be independent of the wheels.

Architectural and Use Case Analysis

Page 73

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 73

Association Class

! A class “attached” to an association
! Contains properties of a relationship
! One instance per link ScheduleOfferingInfo

status

// mark as selected()
// mark as cancelled()
// is selected?()

<<entity>>

CourseOffering
<<entity>>

Schedule
<<entity>>

0..*
0..4

primaryCourses

alternateCourses
0..* 0..2

PrimaryScheduleOfferingInfob
grade

// is enrolled in?()
// mark as enrolled in()
// mark as committed()

<<entity>>

An association class is a class that is connected to an association. It is a full-fledged class and can
contain attributes, operations and other associations.
Association classes allow you to store information about the relationship itself. Such information is
not appropriate, or does not belong, within the classes at either end of the relationship.
There is an instance of the association class for every instance of the relationship (e.g., for every
link).
In many cases, association classes are used to resolve many-to-many relationships, as shown in
the example above. In this case, a Schedule includes multiple primary CourseOfferings and a
CourseOffering can appear on multiple schedules as a primary. Where would a Student’s grade for
a primary CourseOffering “live”? It cannot be stored in Schedule because a Schedule contains
multiple primary CourseOfferings. It cannot be stored in CourseOffering because the same
CourseOffering can appear on multiple Schedules as primary. Grade is really an attribute of the
relationship between a Schedule and a primary CourseOffering.
The same is true of the status of a CourseOffering, primary or alternate, on a particular Schedule.
Thus, association classes were created to contain such information. Two classes related by
generalization were created to leverage the similarities between what must be maintained for
primary and alternate CourseOfferings. Remember, Students can only enrol in and receive a grade
in a primary CourseOffering, not an alternate.

Architectural and Use Case Analysis

Page 74

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 74

1: PerformResponsibility

Link

Association

Collaboration
Diagram

Class
Diagram 0..*

Prime suppliers
0..*

Client Supplier

:Client :Supplier

Client Supplier

PerformResponsibility()

Relationship for every link!

Finding Relationships

To find relationships, start studying the links in the collaboration diagrams. Links between classes
indicate that objects of the two classes need to communicate with one another to perform the use
case. Thus, an association or an aggregation is needed between the associated classes (the
difference between these relationship types and when to use which was discussed earlier).
Reflexive links do not need to be instances of reflexive relationships; an object can send messages
to itself. A reflexive relationship is needed when two different objects of the same class need to
communicate.
The navigability of the relationship should support the required message direction. In the above
example, if navigability was not defined from the Client to the Supplier, then the
PerformResponsibility message could not be sent from the Client to the Supplier.
Focus only on associations needed to realize the use cases; don't add association you think "might"
exist unless they are required based on the interaction diagrams.
Remember to give the associations role names and multiplicities. You can also specify navigability,
though this will be refined in Class Design.
Write a brief description of the association to indicate how the association is used, or what
relationships the association represents.

Architectural and Use Case Analysis

Page 75

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 75

1 0..*

1

1

Schedule

// create with offerings()

<<entity>>

1

0..1

RegisterForCoursesForm

// create schedule ()
// display course offerings ()
// display blank schedule
// select 4 primary and 2 alternate offerings()

<<boundary>>

RegistrationController

// get course offerings()
// create schedule with offerings

<<control>>

// get course offerings(forSemester)

CourseCatalogSystem
<<boundary>>

Student

// add schedule (Schedule)

<<entity>>
currentScheduleregistrant

0..1

0..1

Example: VOPC: Finding Relationships

The diagram on this slide shows classes that collaborate to perform the “Register for Courses” use
case, along with their relationships. Again, this diagram is called a View of Participating Classes
(VOPC) diagram.
Note: The complete VOPC was too big to fit on a single slide, so some of the classes are shown
above and the remaining appear on the next slide.
The relationships were defined based on the interaction diagrams for the “Register for Courses” use
case provided earlier in this module.
Rationale for relationships:
•From RegisterForCoursesForm to RegistrationController: There is one controller for each Schedule
being created (e.g., each Student registration session).
•From RegistrationController to CourseCatalogSystem: There’s only one CourseCatalogSystem
instance for possibly many RegistrationControllers. This serializes access to the legacy system.
•From RegistrationController to Student. A RegistrationController deals with one Student at a time
(the Student currently registering for courses). Note the use of the “registrant” role name.
•From RegistrationController to Schedule. A RegistrationController deals with one Schedule at a
time (the current Schedule for the Student registering for courses). Note the use of the
“currentSchedule” role name.
Note: Many RegisterForCoursesForms can be active at one time (for different sessions/students),
each with their own RegistrationController.

Architectural and Use Case Analysis

Page 76

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 76

ScheduleOfferingInfo
status

// mark as selected()
// mark as cancelled()
// is selected?()

<<entity>>

PrimaryScheduleOfferingInfob
grade

// is enrolled in?()
// mark as enrolled in()

<<entity>>

CourseOffering
number : String = "100"
startTime : Time
endTime : Time
days : Enum

// add student()
// cancel()
// still open?()
// save()

<<entity>>

Schedule

// cancel(theOffering : CourseOffering)
// submit()
// any conflicts?()
// create with offerings()

<<entity>>

0..* 0..4

primaryCourses

alternateCourses0..* 0..2

Example: VOPC: Finding Relationships (contd)

The above are the remaining classes from the Register for Courses VOPC. The complete VOPC
was too big to fit on a single slide, so some of the classes are shown above and the remaining were
shown on the previous slide.
The relationships were defined based on the interaction diagrams for the “Register for Courses” use
case provided earlier in this module.
Rationale for relationships:
•From Schedule to Course Offering:
Each Schedule may have up to four primary Course Offerings, and up to two alternate Course
Offerings.
A particular Course Offering may appear on many Schedules, as either a primary or an alternate.
•Association classes, ScheduleOfferingInfo and PrimaryScheduleOfferingInfo: Status information
must be maintained for each CourseOffering on each Schedule, and for primary CourseOfferings,
the Student’s grade in the CourseOffering must be maintained. Thus, the ScheduleOfferingInfo
class was created because status will need to be maintained for alternate Course Offerings, as well
as primary Course Offerings, with the only difference being that Students can only be enrolled in
and receive a grade in a Primary Course Offering. Thus, generalization was used to model the
commonality amongst the different types of CourseOffering information.

Architectural and Use Case Analysis

Page 77

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 77

! Supplement the Use-Case Descriptions
! For each use-case realization

" Find Classes from Use-Case Behavior
" Distribute Use-Case Behavior to Classes

! For each resulting analysis class
" Describe Responsibilities
" Describe Attributes and Associations
" Qualify Analysis Mechanisms

! Unify Analysis Classes
! Checkpoints

Use-Case Analysis Steps

At this point, we have a pretty good understanding of the analysis classes, their responsibilities, and
the collaborations required to support the functionality described in the use cases.
Now we must look into how each of the defined analysis classes implements the analysis
mechanisms identified in Architectural Analysis.
The purpose of “Qualify Analysis Mechanisms” is to:
•Identify analysis mechanisms (if any) used by the class
•Provide additional information about how the class applies the analysis mechanism
For each such mechanism, qualify as many characteristics as possible, giving ranges where
appropriate, or when there is still much uncertainty
Different architectural mechanisms will have different characteristics, so this information is purely
descriptive and need only be as structured as necessary to capture and convey the information.
During analysis, this information is generally quite speculative, but capturing has value since
conjectural estimates can be revised as more information is uncovered. The analysis mechanism
characteristics should be documented with the class.

Architectural and Use Case Analysis

Page 78

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 78

Analysis Class Analysis Mechanism(s)

Describing Analysis Mechanisms

! Collect all analysis mechanisms in a list
! Draw a map of the client classes to the

analysis mechanisms

! Identify characteristics of the Analysis
Mechanisms

In Architectural Analysis, the possible analysis mechanisms were identified and defined.
From that point on, as classes are defined, the required analysis mechanisms and analysis
mechanism characteristics should be identified and documented. Not all classes will have
mechanisms associated with them. Also, it is not uncommon for a client class to require the
services of several mechanisms.
A mechanism has characteristics, and a client class uses a mechanism by qualifying these
characteristics; this is to discriminate across a range of potential designs. These characteristics are
part functionality, and part size and performance.

Architectural and Use Case Analysis

Page 79

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 79

Analysis Class Analysis Mechanism(s)

Student
Schedule
CourseOffering
Course
RegistrationController

Persistency, Security

Persistency, Legacy Interface
Persistency, Legacy Interface
Distribution

Persistency, Security

Example: Describing Analysis Mechanisms

! Analysis class to analysis mechanism map

As analysis classes are identified, it is important to identify the analysis mechanisms that apply to
the identified classes.
The classes that must be persistent are mapped to the Persistency mechanism.
The classes that are maintained within the legacy Course Catalog system are mapped to the
Legacy Interface mechanism.
The classes for which access must be controlled (i.e., control who is allowed to read and modify
instances of the class) are mapped to the Security mechanism. Note: The Legacy Interface classes
do not require additional security as they are read-only and are considered readable by all.
The classes that are seen to be distributed are mapped to the Distribution mechanism. The
distribution identified during analysis is that which is specified/implied by the user in the initial
requirements. Distribution will be discussed in detail in the Describe Distribution module. For now,
just take it as an architectural given that all control classes are distributed for the OOAD course
example and exercise.

Architectural and Use Case Analysis

Page 80

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 80

Example: Describing Analysis Mechanisms (cont.)

! Analysis mechanism characteristics
! Persistency for Schedule class:

" Granularity: 1 to 10 Kbytes per product
" Volume: up to 2,000 schedules
" Access frequency

• Create: 500 per day
• Read: 2,000 access per hour
• Update: 1,000 per day
• Delete: 50 per day

" Etc.

The above is just an example of how the characteristics for an analysis mechanism would be
documented for a class. For scoping reasons, the analysis mechanisms and their characteristics
are not provided for all of the analysis classes.

Architectural and Use Case Analysis

Page 81

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 81 (continued)

Checkpoints: Analysis Classes

! Are the classes reasonable?
! Does the name of each class clearly reflect

the role it plays?
! Does the class represent a single well-

defined abstraction?
! Are all attributes and responsibilities

functionally coupled?
! Does the class offer the required behavior?
! Are all specific requirements on the class

addressed?

The above checkpoints for the analysis classes might be useful.
Note: All checkpoints should be evaluated with regards to the use cases being developed for the
current iteration.
The class should represent a single well-defined abstraction. If not, consider splitting it.
The class should not define any attributes and responsibilities that are not functionally coupled to
the other attributes or responsibilities defined by that class.
The classes should offer the behavior the use-case realizations and other classes require.
The class should address all specific requirements on the class from the requirement specification.
Remove any attributes and relationships if they are redundant or are not needed by the use-case
realizations.

Architectural and Use Case Analysis

Page 82

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 82

Checkpoints: Use-Case Realizations

! Have all the main and/or sub-flows been
handled, including exceptional cases?

! Have all the required objects been found?
! Has all behavior been unambiguously

distributed to the participating objects?
! Has behavior been distributed to the right

objects?
! Where there are several interaction

diagrams, are their relationships clear and
consistent?

The above checkpoints for the Use-Case realizations might be useful.
Note: All checkpoints should be evaluated with regards to the use cases being developed for the
current iteration.
The objects participating in a use-case realization should be able to perform all of the behavior of
the use case.
If there are several interaction diagrams for the use-case realization, it is important that it is easy to
understand which interaction diagrams relates to which flow of events. Make sure that it is clear
from the Flow of Events description how the diagrams are related to each other.

Architectural and Use Case Analysis

Page 83

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 83

Review: Use-Case Analysis

! What is the purpose of Use-Case Analysis?
! What is an analysis class? Name and

describe the three analysis stereotypes.
! What is a use-case realization?
! Describe some considerations when

allocating responsibilities to analysis
classes.

! How many interaction diagrams should be
produced during Use-Case Analysis?

Architectural and Use Case Analysis

Page 84

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 84

(continued)

Exercise: Use-Case Analysis, Part 2

! Given the following:
" The Requirements artifacts, especially the

Supplementary Specification
" The possible analysis mechanisms
" The flow of events interaction diagrams for a

particular use case

The goal is to complete the Use-Case Analysis of one the use cases that we started in Part 1. In
Part 1, we identified the analysis classes that collaborate to perform the use case, we allocated the
use-case responsibilities to those classes, and we diagrammed the collaborations. In Part 2, we will
complete the Use-Case Analysis of the use cases by defining the relationships that must exist
between the analysis classes to support the collaborations.
References to the givens:
•Supplementary Specification: Payroll Requirements Document, Supplementary Specification
section.
•The analysis mechanisms we are concentrating on in this course include: persistency, distribution,
security, legacy interface). See the Payroll Architecture Handbook, Architectural Mechanisms,
Analysis Mechanisms section for more information on these analysis mechanisms.
•Use-case interaction diagrams: Payroll Exercise Solution, Use-Case Analysis, Exercise: Use-Case
Analysis, Part 1 section.

Architectural and Use Case Analysis

Page 85

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 85

(continued)

Exercise: Use-Case Analysis, Part 2 (cont.)

! Identify the following for a particular use
case:
" Analysis class attributes and relationships
" Analysis class analysis mechanisms

The relationships to be identified are those needed to support the collaborations modeled in the
use-case interaction diagrams developed in Part 1. Be sure to include multiplicity, navigability, and
relationship and/or role names.
The attributes to be identified are the “obvious” properties of the identified classes. More attributes
may be defined during later Class Design.
For each identified analysis class, determine if any of the analysis mechanisms apply. To make this
decision, the supplementary specification may be needed.

Architectural and Use Case Analysis

Page 86

Ing. Giuseppe Calavaro
Corso Informatica Industriale
Università degli studi di Roma “Tor Vergata”
AA 1999/2000

OOAD Using the UML - Analysis and Design Overview, v 4.2
Copyright  1998-1999 Rational Software, all rights reserved 86

Exercise: Use-Case Analysis, Part 2 (cont.)

! Produce the following diagrams:
" VOPC class diagram, containing the analysis

classes, their stereotypes, responsibilities,
attributes, and relationships

" Analysis class to analysis mechanism map

A View of Participating Classes (VOPC) is a class diagram that contains all the classes whose
instances collaborate to perform a use case, as well as the relationships needed to support the
collaborations. The class stereotype and and any attributes should be included on the VOPC.
For each relationship, be sure to include multiplicity, role or relationship names, and navigability
(where known).
The analysis class to analysis mechanism map should now contain a list of all analysis classes and
their associated analysis mechanism (if any).
References to sample diagrams within the course that are similar to what should be produced are:
•VOPC: Slides 64 and 65
•Analysis class to analysis mechanisms map: Slide 68

