
►  ► ► Module 1 
Best Practices of Software Engineering 

Mastering Object-Oriented Analysis 
and Design with UML

Module 1: Best Practices of Software 
Engineering

 

Topics 

Practice 1: Develop Iteratively .............................................................................. 1-7 
Practice 2: Manage Requirements ...................................................................... 1-11 
Practice 3: Use Component Architectures........................................................... 1-15 
Practice 4: Model Visually (UML)........................................................................ 1-18 
Practice 5: Continuously Verify Quality............................................................... 1-22 
Practice 6: Manage Change................................................................................ 1-27 
 

           1 - 1 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Objectives 

2
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Objectives

Identify activities for understanding and 
solving software engineering problems.
Explain the Six Best Practices.
Present the Rational Unified Process (RUP) 
within the context of the Six Best Practices.

 

In this module, you learn about recommended software development Best Practices 
and the reasons for these recommendations. Then you see how the Rational Unified 
Process (RUP) is designed to help you implement the Six Best Practices. 

 

1 - 2  



 Module 1 - Best Practices of Software Engineering 

Module 1 Content Outline 

3
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Module 1 Content Outline

Software development problems 
The Six Best Practices 
RUP within the context of the Six Best 
Practices

 

 
 
 

 1 - 3 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Symptoms of Software Development Problems 

4
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Symptoms of Software Development Problems

User or business needs not met
Requirements not addressed
Modules not integrating
Difficulties with maintenance
Late discovery of flaws
Poor quality of end-user experience
Poor performance under load
No coordinated team effort
Build-and-release issues

 

 
 
 

1 - 4  



 Module 1 - Best Practices of Software Engineering 

Trace Symptoms to Root Causes 

5
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Trace Symptoms to Root Causes

Needs not met
Requirements churn
Modules don’t fit
Hard to maintain
Late discovery
Poor quality
Poor performance
Colliding developers 
Build-and-release

Insufficient requirements
Ambiguous communications
Brittle architectures 
Overwhelming complexity
Undetected inconsistencies 
Poor testing
Subjective assessment
Waterfall development 
Uncontrolled change
Insufficient automation

Symptoms Root Causes Best Practices

Ambiguous communications

Undetected inconsistencies 

Develop Iteratively

Manage Requirements

Use Component Architectures 

Model Visually (UML)

Continuously Verify Quality

Manage Change 

Model Visually (UML)

Continuously Verify Quality

Modules do not fit

 

Treat these root causes, and you will eliminate the symptoms. Eliminate the 
symptoms, and you’ll be in a much better position to develop quality software in a 
repeatable and predictable fashion. 

Best practices are a set of commercially proven approaches to software development, 
which, when used in combination, strike at the root causes of software development 
problems. These are called “Best Practices,” not because we can precisely quantify 
their value, but because they are observed to be commonly used in the industry by 
successful organizations. The Best Practices are harvested from thousands of 
customers on thousands of projects and from industry experts. 

 

 1 - 5 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Module 1 Content Outline 

6
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Module 1 Content Outline

Software development problems
The Six Best Practices 
RUP within the context of the Six Best 
Practices

 

 
 
 

1 - 6  



 Module 1 - Best Practices of Software Engineering 

Practice 1: Develop Iteratively 

7
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Best Practices
Process Made Practical

Develop Iteratively
Manage Requirements

Use Component 
Architectures

Model Visually (UML)
Continuously Verify Quality

Manage Change  

Practice 1: Develop Iteratively

 

Developing iteratively is a technique that is used to deliver the functionality of a 
system in a successive series of releases of increasing completeness. Each release is 
developed in a specific, fixed time period called an iteration. 

Each iteration is focused on defining, analyzing, designing, building, and testing a set 
of requirements. 

 1 - 7 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Waterfall Development Characteristics 

8
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Waterfall Development Characteristics

Delays confirmation of 
critical risk resolution 
Measures progress by 
assessing work 
products that are poor 
predictors of time-to-
completion
Delays and aggregates 
integration and testing
Precludes early 
deployment
Frequently results in 
major unplanned 
iterations

Code and unit test

Design

Subsystem integration

System test

Waterfall Process
Requirements   

analysis

 

Waterfall development is conceptually straightforward because it produces a single 
deliverable. The fundamental problem of this approach is that it pushes risk forward 
in time, when it is costly to undo mistakes from earlier phases. An initial design may 
be flawed with respect to its key requirements, and late discovery of design defects 
may result in costly overruns and/or project cancellation. The waterfall approach 
tends to mask the real risks to a project until it is too late to do anything meaningful 
about them. 

 

1 - 8  



 Module 1 - Best Practices of Software Engineering 

Iterative Development Produces an Executable 

9
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Iterative Development Produces an Executable

Initial
Planning

Planning

Requirements

Analysis & Design

Implementation

Deployment

Test

Evaluation

Management
Environment

Each iteration 
results in an 
executable release

 

The earliest iterations address the greatest risks. Each iteration includes integration 
and testing and produces an executable release. Iterations help: 

• Resolve major risks before making large investments. 

• Enable early user feedback. 

• Make testing and integration continuous. 

• Focus project short-term objective milestones. 

• Make possible deployment of partial implementations. 

Iterative processes were developed in response to these waterfall characteristics. With 
an iterative process, the waterfall steps are applied iteratively. Instead of developing 
the whole system in lock step, an increment (for example, a subset of system 
functionality) is selected and developed, then another increment, and so on. The 
selection of the first increment to be developed is based on risk, with the highest 
priority risks first. To address the selected risk(s), choose a subset of use cases. 
Develop the minimal  set of use cases that will allow objective verification (that is, 
through a set of executable tests) of the risks that you have chosen. Then select the 
next increment to address the next-highest risk, and so on. Thus you apply the 
waterfall approach within each iteration, and the system evolves incrementally. 

 

 1 - 9 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Risk Profiles 

10
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Risk Reduction

Time

R
is

k

Waterfall Risk

Iterative Risk

Risk Profiles

 

Iterative development produces the architecture first, allowing integration to occur as 
the “verification activity” of the design phase, and allowing design flaws to be 
detected and resolved earlier in the lifecycle. Continuous integration throughout the 
project replaces the “big bang” integration at the end of a project. Iterative 
development also provides much better insight into quality, because system 
characteristics that are largely inherent in the architecture (for example, performance, 
fault tolerance, and maintainability) are tangible earlier in the process. Thus, issues 
are still correctable without jeopardizing target costs and schedules. 

 

1 - 10  



 Module 1 - Best Practices of Software Engineering 

Practice 2: Manage Requirements 

11
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Practice 2: Manage Requirements

Best Practices
Process Made Practical

Develop Iteratively
Manage Requirements

Use Component 
Architectures

Model Visually (UML)
Continuously Verify Quality

Manage Change  

 

A report from the Standish Group confirms that a distinct minority of software 
development projects is completed on-time and on-budget.  In their report, the 
success rate was only 16.2%, while challenged projects (operational, but late and 
over-budget) accounted for 52.7%. Impaired (canceled) projects accounted for 
31.1%. These failures are attributed to incorrect requirements definition from the start 
of the project to poor requirements management throughout the development 
lifecycle. (Source: Chaos Report, http://www.standishgroup.com) 

 1 - 11 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Requirements Management 

12
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Requirements Management

Making sure you
solve the right problem
build the right system 

by taking a systematic approach to
eliciting 
organizing 
documenting 
managing

the changing requirements of a                             
software application.

 

 
 
 

1 - 12  



 Module 1 - Best Practices of Software Engineering 

Aspects of Requirements Management 

13
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Aspects of Requirements Management

Analyze the Problem
Understand User Needs
Define the System
Manage Scope
Refine the System Definition
Manage Changing Requirements

 

 
 
 

 1 - 13 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Map of the Territory 

14
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Problem

Solution 
Space

Problem 
Space

Needs

Features

Software
Requirements

Test Scripts Design User 
Docs

The 
Product 

to Be 
Built

Traceability

Map of the Territory

 

Managing requirements involves the translation of stakeholder requests into a set of 
key stakeholder needs and system features. These in turn are detailed into 
specifications for functional and nonfunctional requirements. Detailed specifications 
are translated into test procedures, design, and user documentation. 

 

Traceability allows us to:  

• Assess the project impact of a change in a requirement.  

• Assess the impact of a failure of a test on requirements (that is, if the test fails, the 
requirement may not be satisfied).  

• Manage the scope of the project.  

• Verify that all requirements of the system are fulfilled by the implementation.  

• Verify that the application does only what it is intended to do.  

• Manage change.  

 

1 - 14  



 Module 1 - Best Practices of Software Engineering 

Practice 3: Use Component Architectures 

15
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Practice 3: Use Component Architectures

Best Practices
Process Made Practical

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify Quality

Manage Change  

 

Software architecture is the development product that gives the highest return on 
investment with respect to quality, schedule, and cost, according to the authors of 
Software Architecture in Practice (Len Bass, Paul Clements and Rick Kazman [1998] 
Addison-Wesley). The Software Engineering Institute (SEI) has an effort underway 
called the Architecture Tradeoff Analysis (ATA) Initiative that focuses on software 
architecture, a discipline much misunderstood in the software industry. The SEI has 
been evaluating software architectures for some time and would like to see 
architecture evaluation in wider use. As a result of performing architecture 
evaluations, AT&T reported a 10 percent productivity increase (from news@sei, Vol. 
1, No. 2). 

 1 - 15 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Resilient Component-Based Architectures 

16
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Resilient Component-Based Architectures 

Resilient
Meets current and future requirements
Improves extensibility
Enables reuse
Encapsulates system dependencies

Component-based
Reuse or customize components 
Select from commercially available components
Evolve existing software incrementally

 

Architecture is a part of Design. It is about making decisions on how the system will 
be built. But it is not all of the design. It stops at the major abstractions, or, in other 
words, the elements that have some pervasive and long-lasting effect on system 
performance and ability to evolve. 

A software system’s architecture is perhaps the most important aspect that can be 
used to control the iterative and incremental development of a system throughout its 
lifecycle. 

The most important property of an architecture is resilience –flexibility in the face of 
change. To achieve it, architects must anticipate evolution in both the problem 
domain and the implementation technologies to produce a design that can gracefully 
accommodate such changes. Key techniques are abstraction, encapsulation, and 
object-oriented Analysis and Design. The result is that applications are fundamentally 
more maintainable and extensible. 

1 - 16  



 Module 1 - Best Practices of Software Engineering 

Purpose of a Component-Based Architecture 

17
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Purpose of a Component-Based Architecture

Basis for reuse
Component reuse
Architecture reuse

Basis for project management
Planning
Staffing
Delivery

Intellectual control
Manage complexity
Maintain integrity System-

software

Middleware

Business-
specific

Application-
specific

Component-based 
architecture with 
layers

 

Definition of a (software) component: 

RUP Definition: A nontrivial, nearly independent, and replaceable part of a system 
that performs a clear function in the context of a well-defined architecture. A 
component conforms to and provides the physical realization of a set of interfaces.  

UML Definition: A physical, replaceable part of a system that packages 
implementation, and that conforms to and provides the realization of a set of 
interfaces. A component represents a physical piece of the implementation of a 
system, including software code (source, binary, or executable) or equivalents such as 
scripts or command files.  

 1 - 17 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Practice 4: Model Visually 

18
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Practice 4: Model Visually (UML)

Best Practices
Process Made Practical

Develop Iteratively
Manage Requirements

Use Component 
Architectures

Model Visually (UML)
Continuously Verify Quality

Manage Change

 

A model is a simplification of reality that provides a complete description of a system 
from a particular perspective. We build models so that we can better understand the 
system we are building. We build models of complex systems because we cannot 
comprehend any such system in its entirety. 

1 - 18  



 Module 1 - Best Practices of Software Engineering 

Why Model Visually? 

19
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Why Model Visually?

Captures structure and behavior
Shows how system elements fit together
Keeps design and implementation 
consistent
Hides or exposes details as appropriate 
Promotes unambiguous communication

The UML provides one language for all 
practitioners

 

Modeling is important because it helps the development team visualize, specify, 
construct, and document the structure and behavior of system architecture. Using a 
standard modeling language such as the UML (the Unified Modeling Language), 
different members of the development team can communicate their decisions 
unambiguously to one another. 

Using visual modeling tools facilitates the management of these models, letting you 
hide or expose details as necessary. Visual modeling also helps you maintain 
consistency among system artifacts - its requirements, designs, and implementations. 
In short, visual modeling helps improve a team’s ability to manage software 
complexity. 

 1 - 19 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Visual Modeling With the Unified Modeling Language 

20
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Visual Modeling With the Unified Modeling Language

Activity
Diagrams

Models

Dynamic 
Diagrams

Static 
Diagrams

Multiple views
Precise syntax and 
semantics

Sequence
Diagrams

Collaboration
Diagrams

Statechart
Diagrams

Deployment
Diagrams

Component
Diagrams

Object
Diagrams

Class
DiagramsUse-Case

Diagrams

 

In building a visual model of a system, many different diagrams are needed to 
represent different views of the system. The UML provides a rich notation for 
visualizing models. This includes the following key diagrams: 

• Use-Case diagrams to illustrate user interactions with the system  

• Class diagrams to illustrate logical structure  

• Object diagrams to illustrate objects and links 

• Component diagrams to illustrate physical structure of the software 

• Deployment diagrams to show the mapping of software to hardware 
configurations 

• Activity diagrams to illustrate flows of events 

• Statechart diagrams to illustrate behavior 

• Interaction diagrams (that is, collaboration and sequence diagrams) to illustrate 
behavior 

 
 

1 - 20  



 Module 1 - Best Practices of Software Engineering 

Visual Modeling Using UML Diagrams 

21
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Visual Modeling Using UML Diagrams

Actor A

Use Case 1

Use Case 2

Actor B 

user : Clerk

mainWnd : MainWnd

fileMgr : FileMgr

repository : Repository
document : Document

gFile : GrpFile

9: sortByN ame ( )

L1: Doc vi ew  request ( )

2: fetc hDoc( )

5: readDoc ( )

7: readFile ( )

3: create ( )

6: fil lDocument ( )

4: create ( )

8: fillFile ( )

Window95

¹®¼-°ü¸® 
Å¬¶óÀÌ¾ðÆ®.EXE

Windows
NT

¹®¼-°ü¸® ¿£Áø.EXE

Windows
NT

Windows95

S olaris

ÀÀ ¿ë¼-¹ö.EXE

Alpha
UNIX

IBM 
Mainfra me

µ¥ÀÌÅ º̧£ÀÌ½º¼- ¹ö

Windows95

¹®¼-°ü¸® ¾ÖÇÃ¸ ´Document

FileManager

GraphicFile

File

Repository DocumentList

FileList

user
mainWnd fileMgr : 

FileMgr
repositorydocument : 

Document
gFile

1: Doc view  request ( )

2: fetchDoc( )

3: create ( )

4: create ( )

5: readDoc ( )

6: fillDocument ( )

7: readFile ( )

8: f illFile ( )

9: sortByName ( )

Æ¯Á¤¹®¼- ¿¡ ë́ÇÑ º ±̧â ¦̧ 
»ç¿ëÀÚ°¡ ¿äÃ»ÇÑ´Ù.

È-À Ï°ü¸®À Ú´Â À Ð¾î¿Â  
¹®¼ -ÀÇ Á ¤º̧ ¦̧ ÇØ ḉ ¹® ¼- 
°´Ã ¼¿¡ ¼³Á¤À» ¿äÃ»ÇÑ´Ù.

È -̧ é °´Ã ¼´Â ÀÐ¾îµéÀ Î 
° ´Ã¼µé¿ ¡ ë́ÇØ ÀÌ §̧ º° ·Î 
Á ¤·ÄÀ» ½ÃÄÑ È-̧ é¿¡ 
º̧ ¿©ÁØ´Ù. Forward and 

Reverse 
Engineering

Target
System

Openning

Writing

Reading
Closing

add file [ numberOffile==MAX ] / 
flag OFF

add file

close file

close fileUse Case 3

Use-Case
Diagram Class Diagram

Collaboration 
Diagram

Sequence 
Diagram

Component 
Diagram

Statechart
Diagram

GrpFile

read( )
open( )
create( )
fillFile( )

rep

Repositor y

name : char * = 0

readD oc( )
readFil e( )

(from Persistence)

FileMgr

fetchDoc( )
sortByName( )

DocumentList

add( )
del ete( )

Document

name : i nt
doci d : int
numFiel d : int

get( )
open( )
close( )
read( )
sortFileList( )
create( )
fillDocument( )

fList

1

FileList

add( )
del ete( )

1

File

read( )

read() fill the 
code..

Deployment 
Diagram

 

Visual modeling with the UML makes application architecture tangible, permitting us 
to assess it in multiple dimensions. How portable is it? Can it exploit expected 
advances in parallel processing? How can you modify it to support a family of 
applications?  

We have discussed the importance of architectural resilience and quality. The UML 
enables us to evaluate these key characteristics during early iterations — at a point 
when design defects can be corrected before threatening project success.  

Advances in forward and reverse engineering techniques permit changes to an 
application’s model to be reflected automatically in its source code, and changes to 
its source code to be automatically reflected in its model. This is critical when using 
an iterative process, in which we expect such changes with each iteration. 

 1 - 21 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Practice 5: Continuously Verify Quality 

22
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Practice 5: Continuously Verify Quality

Best Practices
Process Made Practical

Develop Iteratively
Manage Requirements

Use Component 
Architectures

Model Visually (UML)
Continuously
Verify Quality
Manage Change

 

Quality, as used within RUP, is defined as "The characteristic of having demonstrated 
the achievement of producing a product which meets or exceeds agreed-upon 
requirements, as measured by agreed-upon measures and criteria, and is produced 
by an agreed-upon process." Given this definition, achieving quality is not simply 
"meeting requirements" or producing a product that meets user needs and 
expectations. Quality also includes identifying the measures and criteria (to 
demonstrate the achievement of quality), and the implementation of a process to 
ensure that the resulting product has achieved the desired degree of quality (and can 
be repeated and managed). 

In many organizations, software testing accounts for 30% to 50% of software 
development costs. Yet most people believe that software is not well-tested before it 
is delivered. This contradiction is rooted in two clear facts. First, testing software is 
enormously difficult. The different ways a particular program can behave are almost 
infinite. Second, testing is typically done without a clear methodology and without 
the required automation or tool support. While the complexity of software makes 
complete testing an impossible goal, a well-conceived methodology and use of state-
of-the-art tools can greatly improve the productivity and effectiveness of the software 
testing.  

 
 

1 - 22  



 Module 1 - Best Practices of Software Engineering 

Continuously Verify Your Software’s Quality 

23
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Continuously Verify Your Software’s Quality

Cost

TransitionConstructionElaborationInception

Software problems are
100 to 1000 times more costly

to find and repair after deployment 

Cost to Repair Software

Cost of Lost Opportunities

Cost of Lost Customers

 

This principle is driven by a fundamental and well-known property of software 
development: It is a lot less expensive to correct defects during development than to 
correct them after deployment.  

• Tests for key scenarios ensure that all requirements are properly implemented. 

• Poor application performance hurts as much as poor reliability. 

• Verify software reliability — memory leaks, bottlenecks. 

• Test every iteration — automate test. 

 
 

 1 - 23 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Testing Dimensions of Quality 

24
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Testing Dimensions of Quality

Reliability
Test that the application 
behaves consistently         
and predictably.

Performance
Test the online response 
under average and                 
peak loading.

Functionality
Test the accurate 
workings of each 
usage scenario.

Usability
Test application                                      
from the perspective                            
of convenience to                      
end user.

Supportability
Test the ability to                        
maintain and support 
application under 
production use.

 

Functional testing verifies that a system executes the required use-case scenarios as 
intended. Functional tests may include the testing of features, usage scenarios, and 
security. 

Usability testing evaluates the application from the user’s perspective. Usability tests 
focus on human factors, aesthetics, consistency in the user interface, online and 
context-sensitive Help, wizards and agents, user documentation, and training 
materials.  

Reliability testing verifies that the application performs reliably and is not prone to 
failures during execution (crashes, hangs, and memory leaks). Effective reliability 
testing requires specialized tools. Reliability tests include tests of integrity, structure, 
stress, contention, and volume. 

Performance testing checks that the target system works functionally and reliably 
under production load. Performance tests include benchmark tests, load tests, and 
performance profile tests. 

Supportability testing verifies that the application can be deployed as intended. 
Supportability tests include installation and configuration tests. 

1 - 24  



 Module 1 - Best Practices of Software Engineering 

Test Each Iteration 

25
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

UML Model
and

Implementation

Tests

Iteration 1

Test Suite 1

Iteration 2

Test Suite 2

Iteration 4

Test Suite 4

Iteration 3

Test Suite 3

Test Each Iteration

 

In each iteration, automated tests are created that test the requirements addressed in 
that iteration. As new requirements are added in subsequent iterations, new tests are 
generated and run. At times, a requirement may be changed in a later iteration. In 
that case, the tests associated with the changed requirement may be modified or 
simply regenerated by an automated tool. 

 1 - 25 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Test Within the Product Development Lifecycle 

26
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Test Within the Product Development Lifecycle

Iteration
X

Iteration
X + 2

Iteration
X + 1

Requirements Capture

Analysis and Design

Implementation

Time

Project
Planning

Define
Mission

Build

Test and
Evaluate

Validate
Build

Achieve
Mission

Improve
Assets

Verify Approach

 

The testing lifecycle is a part of the software lifecycle; both should start in an 
equivalent time frame. The design and development process for tests can be as 
complex and arduous as the process for developing the software product itself. If tests 
do not start in line with the first executable software releases, the test effort will back 
load the discovery of potentially important problems until late in the development 
cycle. 

1 - 26  



 Module 1 - Best Practices of Software Engineering 

Practice 6: Manage Change 

27
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Practice 6: Manage Change 

Best Practices
Process Made Practical

Develop Iteratively
Manage Requirements

Use Component 
Architectures

Model Visually (UML)
Continuously Verify Quality

Manage Change

 

You cannot stop change from being introduced into a project. However, you must 
control how and when changes are introduced into project artifacts, and who 
introduces those changes.  

You must also synchronize changes across development teams and locations. 

Unified Change Management (UCM) is the Rational Software approach to managing 
change in software system development, from requirements to release. 

 

 1 - 27 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

What Do You Want to Control? 

28
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

ALERTREPORT

Workspace
Management

Process 
Integration

Parallel 
Development

Build 
Management

Configuration 
Management is 
more than just 
check-in and 
check-out

What Do You Want to Control?

Secure workspaces for each developer
Automated integration/build management
Parallel development

 

Establishing a secure workspace for each developer provides isolation from changes 
made in other workspaces and control of all software artifacts — models, code, 
documents and so forth. 

A key challenge to developing software-intensive systems is the need to cope with 
multiple developers, organized into different teams, possibly at different sites, all 
working together on multiple iterations, releases, products, and platforms. In the 
absence of disciplined control, the development process rapidly degrades into chaos. 
Progress can come to a stop. 

Three common problems that result are: 

• Simultaneous update: When two or more roles separately modify the same 
artifact, the last one to make changes destroys the work of the former. 

• Limited notification: When a problem is fixed in shared artifacts, some of the 
users are not notified of the change. 

• Multiple versions: With iterative development, it would not be unusual to have 
multiple versions of an artifact in different stages of development at the same 
time. For example, one release is in customer use, one is in test, and one is still in 
development. If a problem is identified in any one of the versions, the fix must be 
propagated among all of them. 

1 - 28  



 Module 1 - Best Practices of Software Engineering 

Aspects of a CM System 

29
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Aspects of a CM System

Change Request Management (CRM)
Configuration Status Reporting
Configuration Management (CM)
Change Tracking
Version Selection
Software Manufacture

 

Change Request Management (CRM) addresses the organizational infrastructure 
required to assess the cost and schedule impacts of a requested change to the existing 
product. CRM addresses the workings of a Change Review Team or Change Control 
Board.  
Configuration Status Reporting (Measurement) is used to describe the “state” of 
the product based on the type, number, rate and severity of defects found and fixed 
during the course of product development. Metrics derived under this aspect, 
through either audits or raw data, are useful in determining the overall completeness 
of the project.  
Configuration Management (CM) describes the product structure and identifies its 
constituent configuration items, which are treated as single versionable entities in the 
configuration management process. CM deals with defining configurations, building 
and labeling, and collecting versioned artifacts into constituent sets, as well as with 
maintaining traceability among these versions.  
Change Tracking describes what is done to components for what reason and at what 
time. It serves as the history of and rationale for changes. It is quite separate from 
assessing the impact of proposed changes as described under Change Request 
Management. 
Version Selection ensures that the right versions of configuration items are selected 
for change or implementation. Version selection relies on a solid foundation of 
“configuration identification.”  
Software Manufacture covers the need to automate the steps to compile, test, and 
package software for distribution.  

 1 - 29 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Unified Change Management (UCM) 

30
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Unified Change Management (UCM)
UCM involves:

Management across the lifecycle
System
Project Management

Activity-Based Management
Tasks
Defects
Enhancements

Progress Tracking
Charts
Reports

 

Unified Change Management (UCM) is Rational Software's approach to managing 
change in software system development, from requirements to release. UCM spans 
the development lifecycle, defining how to manage change to requirements, design 
models, documentation, components, test cases, and source code. 

One of the key aspects of the UCM model is that it unifies the activities used to plan 
and track project progress and the artifacts undergoing change.  

 

1 - 30  



 Module 1 - Best Practices of Software Engineering 

Best Practices Reinforce Each Other 

31
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Best Practices Reinforce Each Other

Validates architectural 
decisions early on

Addresses complexity of 
design/implementation incrementally

Measures quality early and often

Evolves baselines incrementally

Ensures users are involved 
as requirements evolve

Best Practices
Develop Iteratively

Manage Requirements

Use Component Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

 

In the case of our Six Best Practices, the whole is much greater than the sum of the 
parts. Each of the Best Practices reinforces and, in some cases, enables the others. 
This slide shows just one example: how iterative development leverages the other five 
Best Practices. However, each of the other five practices also enhances iterative 
development. For example, iterative development done without adequate 
requirements management can easily fail to converge on a solution. Requirements 
can change at will, users cannot agree, and the iterations go on forever.  

When requirements are managed, this is less likely to happen. Changes to 
requirements are visible, and the impact on the development process is assessed 
before the changes are accepted. Convergence on a stable set of requirements is 
ensured. Similarly, each pair of Best Practices provides mutual support. Hence, 
although it is possible to use one Best Practice without the others, it is not 
recommended, since the resulting benefits will be significantly decreased. 

 1 - 31 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Module 1 Content Outline 

32
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Module 1 Content Outline

Software development problems
The Six Best Practices 
RUP within the context of the Six Best 
Practices

 

 
 
 

1 - 32  



 Module 1 - Best Practices of Software Engineering 

Rational Unified Process Implements Best Practices 

33
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Rational Unified Process Implements Best Practices

Best Practices
Process Made Practical 

Develop Iteratively
Manage Requirements

Use Component Architectures
Model Visually (UML)

Continuously Verify Quality
Manage Change 

 

Why have a process? 

• Provides guidelines for efficient development of quality software 

• Reduces risk and increases predictability  

• Promotes a common vision and culture 

• Captures and institutionalizes Best Practices 

The Rational Unified Process (RUP) is a generic business process for object-oriented 
software engineering. It describes a family of related software-engineering processes 
sharing a common structure and a common process architecture. It provides a 
disciplined approach to assigning tasks and responsibilities within a development 
organization. Its goal is to ensure the production of high-quality software that meets 
the needs of its end users within a predictable schedule and budget. The RUP 
captures the Best Practices in modern software development in a form that can be 
adapted for a wide range of projects and organizations. 

The UML provides a standard for the artifacts of development (semantic models, 
syntactic notation, and diagrams): the things that must be controlled and exchanged. 
But the UML is not a standard for the development process. Despite all of the value 
that a common modeling language brings, you cannot achieve successful 
development of today’s complex systems solely by the use of the UML. Successful 
development also requires employing an equally robust development process, which 
is where the RUP comes in.  

 1 - 33 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Achieving Best Practices 

34
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Achieving Best Practices

Iterative approach
Guidance for activities 
and artifacts
Process focus on 
architecture
Use cases that drive 
design and 
implementation
Models that abstract 
the system

 

Examples: 

• The dynamic structure (phases and iterations) of the Rational Unified Process 
creates the basis of iterative development. 

• The Project Management discipline describes how to set up and execute a 
project using phases and iterations.   

• The Use-Case Model of the Requirements discipline and the risk list determine 
what functionality you implement in an iteration. 

• The Workflow Details of the Requirements discipline show the activities and 
artifacts that make requirements management possible. 

• The iterative approach allows you to progressively identify components, and to 
decide which one to develop, which one to reuse, and which one to buy.  

• The Unified Modeling Language (UML) used in the process represents the basis 
of visual modeling and has become the de facto modeling language standard. 

• The focus on software architecture allows you to articulate the structure: the 
components, the ways in which they integrate, and the fundamental mechanisms 
and patterns by which they interact.  

 

1 - 34  



 Module 1 - Best Practices of Software Engineering 

A Team-Based Definition of Process 

35
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

A Team-Based Definition of Process

A process defines Who is doing What,
When, and How, in order to reach a certain 
goal. 

New or changed
requirements

New or changed 
system

Software Engineering
Process

 

 
 
 

 1 - 35 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Process Structure - Lifecycle Phases 

36
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Inception Elaboration Construction Transition

Process Structure - Lifecycle Phases

Rational Unified Process has four phases:
Inception - Define the scope of project
Elaboration - Plan project, specify features and 
baseline architecture 
Construction - Build the product
Transition - Transition the product into end-user 
community

time

 

During Inception, we define the scope of the project: what is included and what is 
not. We do this by identifying all the actors and use cases, and by drafting the most 
essential use cases (typically 20% of the complete model). A business plan is 
developed to determine whether resources should be committed to the project. 

During Elaboration, we focus on two things: getting a good grasp of the requirements 
(80% complete) and establishing an architectural baseline. If we have a good grasp of 
the requirements and the architecture, we can eliminate a lot of the risks, and we will 
have a good idea of how much work remains to be done. We can make detailed 
cost/resource estimations at the end of Elaboration. 

During Construction, we build the product in several iterations up to a beta release. 

During Transition, we move the product to the end user and focus on end-user 
training, installation, and support. 

The amount of time spent in each phase varies. For a complex project with many 
technical unknowns and unclear requirements, Elaboration may include three-to-five 
iterations. For a simple project, where requirements are known and the architecture 
is simple, Elaboration may include only a single iteration. 

1 - 36  



 Module 1 - Best Practices of Software Engineering 

Phase Boundaries Mark Major Milestones 

37
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Phase Boundaries Mark Major Milestones

Inception Elaboration Construction Transition

Lifecycle 
Objective 
Milestone 

(LCO)

Lifecycle 
Architecture 

Milestone 
(LCA)

Initial Operational 
Capability 
Milestone 

(IOC)

Product 
Release

time

 

At each of the major milestones, we review the project and decide whether to 
proceed with it as planned, to cancel the it, or to revise it. The criteria used to make 
these decisions vary by phase.  
LCO: scope is agreed upon and risks are understood and reasonable 
LCA: high risks are addressed and architecture is stable 
IOC: product is complete and quality is acceptable 
The evaluation criteria for the Inception phase (LCO) include: stakeholder 
concurrence on scope definition and cost/schedule estimates; requirements 
understanding as evidenced by the fidelity of the primary use cases; credibility of 
cost/schedule estimates, priorities, risks, and development process; depth and 
breadth of any architectural prototype; actual expenditures versus planned 
expenditures.  
The evaluation criteria for the Elaboration phase (LCA) include: stability of the 
product vision and architecture; resolution of major risk elements; adequate planning 
and reasonable estimates for project completion; stakeholder acceptance of the 
product vision and project plan; and acceptable expenditure level. 
The evaluation criteria for the Construction phase (IOC) include: stability and 
maturity of the product release (that is, is it ready to be deployed?); readiness of the 
stakeholders for the transition; and acceptable expenditure level. 
At the end of the Transition phase, we decide whether to release the product. We 
base this primarily on the level of user satisfaction achieved during the Transition 
phase. Often this milestone coincides with the initiation of another development 
cycle to improve or enhance the product. In many cases, this new development cycle 
may already be underway. 

 1 - 37 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Iterations and Phases 

38
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Iterations and Phases

An iteration is a distinct sequence of activities based on 
an established plan and evaluation criteria, resulting in an 
executable release (internal or external).

Preliminary
Iteration

Architect.
Iteration

Architect.
Iteration

Devel. 
Iteration

Devel. 
Iteration

Devel. 
Iteration

Transition
Iteration

Transition
Iteration

Inception Elaboration Construction Transition

Minor Milestones:  Releases 

 

Within each phase, there is a series of iterations. The number of iterations per phase 
will vary. Each iteration results in an executable release encompassing larger and 
larger subsets of the final application.  

An internal release is kept within the development environment and (optionally) 
demonstrated to the stakeholder community. We provide stakeholders (usually users) 
with an external release for installation in their environment. External releases are 
much more expensive because they require user documentation and technical 
support — because of this, they normally occur only during the Transition phase. 

The end of an iteration marks a minor milestone. At this point, we assess technical 
results and revise future plans as necessary. 

1 - 38  



 Module 1 - Best Practices of Software Engineering 

Bringing It All Together: The Iterative Approach 

39
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Bringing It All Together: The Iterative Approach

Disciplines
group 
activities 
logically.

In an 
iteration, 
you walk 
through all 
disciplines.

 

This slide illustrates how phases and iterations (the time dimension) relate to the 
development activities (the discipline dimension). The relative size of each color area 
in the graph indicates how much of the activity is performed in each phase or 
iteratino. 

Each iteration involves activities from all disciplines. The relative amount of work 
related to the disciplines changes between iterations. For instance, during late 
Construction, the main work is related to Implementation and Test and very little 
work on Requirements is done.  

Note that requirements are not necessarily complete by the end of Elaboration. It is 
acceptable to delay the analysis and design of well-understood portions of the system 
until Construction because they are low in risk. 

 1 - 39 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Disciplines Produce Models 

40
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Disciplines Produce Models

Realized By

Implementation
Model

Design Model

Use-Case 
Model

Models

Disciplines Implement-
ation

Analysis &
Design

Require-
ments

Business Use-
Case Model

Business 
Modeling

Business 
Object Model

BBB

B

Realized 
By

Automated
By

Implemented
By

 

The RUP takes a model-driven approach. Several models are needed to fully describe 
the evolving system. Each major discipline produces one of those models. The models 
are developed incrementally across iterations. 

• The Business Model is a model of what the business processes are and of the 
business environment. It can be used to generate requirements of supporting 
information systems.  

• The Use-Case Model is a model of what the system is supposed to do and of the 
system environment.  

• The Design Model is an object model describing the realization of use cases. It 
serves as an abstraction of the implementation model and its source code. 

• The Implementation Model is a collection of components and the 
implementation subsystems that contain them.  

Test Suites are derived from many of these models. 

 

1 - 40  



 Module 1 - Best Practices of Software Engineering 

Disciplines Guide Iterative Development   

41
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Disciplines Guide Iterative Development  
Business
Modeling:
Workflow

Requirements:
Workflow

 

Within a discipline, workflows group activities that are done together.  Discipline 
workflows will be present in varying degrees, depending on the phase. 

 

 1 - 41 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

Overview of Rational Unified Process Concepts 

42
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Overview of Rational Unified Process Concepts

Phase Iteration Discipline
Workflow
Detail

Role

Artifact

Activity

Divided into Considers Described by

Responsible for Modifies

ReferencesParticipates in

Document Model
ElementModel

 

Basic Concepts in the RUP 
A software lifecycle in the RUP is decomposed over time into four sequential phases, 
each concluded by a major milestone. Each phase is essentially a span of time 
between two major milestones. 
An iteration is a pass through a sequence of process disciplines. Each iteration 
concludes with the release of an executable product.  
A discipline shows all the activities that you may go through to produce a particular 
set of artifacts. We describe these disciplines at an overview level — a summary of all 
roles, activities, and artifacts that are involved.  
A workflow detail is a grouping of activities that are done "together," presented with 
input and resulting artifacts. 
A role defines the behavior and responsibilities of an individual, or a set of individuals 
working together as a team.  
An activity is the smallest piece of work that is relevant.  
Artifacts: These are the modeling constructs and documents that activities evolve, 
maintain, or use as input.  
• Documents: These record system requirements, including usability, reliability, 

performance, and supportability requirements.  
• Model: This is a simplified view of a system.  It shows the essentials of the system 

from a particular perspective and hides the non-essential details.   
• Model elements: These help the team visualize, construct, and document the 

structure and behavior of the system, without getting lost in complexity. 

1 - 42  



 Module 1 - Best Practices of Software Engineering 

Review 

43
Mastering Object Oriented Analysis and Design with UML
Copyright © 2003 Rational Software, all rights reserved

Review

Best Practices guide software engineering 
by addressing root causes.
Best Practices reinforce each other.
Process guides a team on who does what,  
when, and how.
The Rational Unified Process is a means of 
achieving Best Practices.

 

 
 
 

 1 - 43 



DEV475 Mastering Object-Oriented Analysis and Design with UML 

 

1 - 44  


	? ??Module 1�Best Practices of Software Engineering
	TopicsPractice 1: Develop Iteratively1-3Practice 2: Manage Requirements1-3Practice 3: Use Component Architectures1-3Practice 4: Model Visually (UML)1-3Practice 5: Continuously Verify Quality1-3Practice 6: Manage Change1-3
	Objectives
	Module 1 Content Outline
	Symptoms of Software Development Problems
	Trace Symptoms to Root Causes
	Module 1 Content Outline

	Practice 1: Develop Iteratively
	Waterfall Development Characteristics
	Iterative Development Produces an Executable
	Risk Profiles

	Practice 2: Manage Requirements
	Requirements Management
	Aspects of Requirements Management
	Map of the Territory

	Practice 3: Use Component Architectures
	Resilient Component-Based Architectures
	Purpose of a Component-Based Architecture

	Practice 4: Model Visually
	Why Model Visually?
	Visual Modeling With the Unified Modeling Language
	Visual Modeling Using UML Diagrams

	Practice 5: Continuously Verify Quality
	Continuously Verify Your Software’s Quality
	Testing Dimensions of Quality
	Test Each Iteration
	Test Within the Product Development Lifecycle

	Practice 6: Manage Change
	What Do You Want to Control?
	Aspects of a CM System
	Unified Change Management (UCM)
	Best Practices Reinforce Each Other
	Module 1 Content Outline
	Rational Unified Process Implements Best Practices
	Achieving Best Practices
	A Team-Based Definition of Process
	Process Structure - Lifecycle Phases
	Phase Boundaries Mark Major Milestones
	Iterations and Phases
	Bringing It All Together: The Iterative Approach
	Disciplines Produce Models
	Disciplines Guide Iterative Development
	Overview of Rational Unified Process Concepts
	Review



