
Solutions to CNS Exercises 
 

Exercise 1 
SECRET SHARING - BASIC EXAMPLE 

Assume a (3,5) Secret Sharing scheme, with standard numbering of parties. i.e., Pi  xi = {1,2,3,4,5}. Using arithmetic 
modulus 11, the dealer hides a secret S in the range [0,10]. At reconstruction time, Parties 1,2 and 4 show their shares: 

P1  share1 = 4 

P2  share2 = 7 

P4  share4 = 9 

What is the secret? 

 

Solution: 

Remembering the general formula for the Lagrange Coefficient in the (t,n) case: Α𝑖𝑖 = ∏ −𝑥𝑥𝑘𝑘
𝑥𝑥𝑖𝑖−𝑥𝑥𝑘𝑘𝑘𝑘≠𝑖𝑖  having 3 out of 5 

shares the secret is completely revealed and is computable through the means of the above formula as follows: 

Α1 = �
−𝑥𝑥𝑘𝑘

𝑥𝑥1 − 𝑥𝑥𝑘𝑘𝑘𝑘≠1
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−4
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Α2 = �
−𝑥𝑥𝑘𝑘

𝑥𝑥2 − 𝑥𝑥𝑘𝑘𝑘𝑘≠2

= �
−1
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−4
2− 4

� = −2 

Α4 = �
−𝑥𝑥𝑘𝑘

𝑥𝑥4 − 𝑥𝑥𝑘𝑘𝑘𝑘≠4

= �
−1
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� �
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1
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Now we can compute the secret as: 

𝑆𝑆 = 4 �8
3
� + 7(−2) + 9 �1

3
�   𝑚𝑚𝑚𝑚𝑚𝑚 11     

 

So the Solution can be written as follows: 

𝑆𝑆 = 4 ∙ 8 ∙ 4 + 7(−2) + 9 ∙ 4  𝑚𝑚𝑚𝑚𝑚𝑚 11 = 128 − 14 + 36 = 150 𝑚𝑚𝑚𝑚𝑚𝑚11 = 7 ∎     

 

 

 

Remark: Multiplicative inverse mod n  

1
3

= 3−1mod 11 = ?  we need to find 𝑥𝑥  𝑠𝑠. 𝑡𝑡.   

3𝑥𝑥 = 1 𝑚𝑚𝑚𝑚𝑚𝑚11 

in this case is 4: 3 ∙ 4 = 12 𝑚𝑚𝑚𝑚𝑚𝑚 11 = 1 

 



Exercise 2 
2: SECRET SHARING – Information leakage 

Assume the same SS scheme as in exercise 1 above but in this case using ordinary arithmetic – NO MODULUS! The 
dealt secret S was the range [0,10]. At reconstruction time, Parties 2 and 4 show their shares: 

P2  share2 = 29 

P4  share4 = 75 

Prove that even if a third share is missing, this information is sufficient to completely reveal the secret! 

 

[hint: write an expression parametric in the hidden secret S, and show that only one value in the range [0,10] satisfies 
a condition…] 

 

Solution: 

In this case we have only 2 out of 5 shares so we need to use a trick in order to guess, in this case completely reveal, the 
secret. Let’s calculate as before shares for x = 1, 2 ,4 

Α1 = �
−𝑥𝑥𝑘𝑘

𝑥𝑥1 − 𝑥𝑥𝑘𝑘𝑘𝑘≠1

= �
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� �

−4
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8
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Α2 = �
−𝑥𝑥𝑘𝑘

𝑥𝑥2 − 𝑥𝑥𝑘𝑘𝑘𝑘≠2

= �
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Α4 = �
−𝑥𝑥𝑘𝑘

𝑥𝑥4 − 𝑥𝑥𝑘𝑘𝑘𝑘≠4

= �
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Now we can’t derive the secret because the share bind to x=1 is not known BUT we know something else about the 
solution: the share must be an integer value, so let’s write out the parametric function as hinted by the professor. 

𝑆𝑆 = 𝑥𝑥 �
8
3
� + 29(−2) + 75 �

1
3
� = 𝑥𝑥 �

8
3
� − 33

𝑦𝑦𝑖𝑖𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯⎯� 𝑥𝑥 =

3(𝑆𝑆 + 33)
8

 

Now given 𝑆𝑆 ∈ (1, … ,10) we can guess until we find a value of S that yields an integer value for x 

• S = 1 

𝑥𝑥 =
3(1 + 33)

8
=

102
8

 𝑛𝑛𝑚𝑚𝑡𝑡 𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

• S = 2 

𝑥𝑥 =
3(2 + 33)

8
=

105
8

 𝑛𝑛𝑚𝑚𝑡𝑡 𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

• S = 3 

𝑥𝑥 =
3(3 + 33)

8
=

108
8

 𝑛𝑛𝑚𝑚𝑡𝑡 𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

• S = 4 

𝑥𝑥 =
3(4 + 33)

8
=

111
8

 𝑛𝑛𝑚𝑚𝑡𝑡 𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

• S = 5 

𝑥𝑥 =
3(5 + 33)

8
=

114
8

 𝑛𝑛𝑚𝑚𝑡𝑡 𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
 

• S = 6 

𝑥𝑥 =
3(6 + 33)

8
=

117
8

 𝑛𝑛𝑚𝑚𝑡𝑡 𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

• S = 7 

𝑥𝑥 =
3(7 + 33)

8
=

120
8

= 15 𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑚𝑚 𝑠𝑠ℎ𝑣𝑣𝑖𝑖𝑖𝑖 

• S = 8 

𝑥𝑥 =
3(8 + 33)

8
=

123
8

 𝑛𝑛𝑚𝑚𝑡𝑡 𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

• S = 9 

𝑥𝑥 =
3(9 + 33)

8
=

126
8

 𝑛𝑛𝑚𝑚𝑡𝑡 𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

• S = 10 

𝑥𝑥 =
3(10 + 33)

8
=

129
8

 𝑛𝑛𝑚𝑚𝑡𝑡 𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖

Given the educated guess we’ve made, the secret is 7 because, in this case, is the only result which leads to an 
integer share value. ∎ 

  



Exercise 3 
3: Common Modulus Attack 

An RSA scheme uses modulus n = 77; A same message M is RSA-encrypted using two different public keys e1 = 17 
and e2 = 23, but same modulus n=77. The two resulting ciphertexts are: c1=60 and c2=53. Decrypt the message applying 
the Common Modulus Attack. 

 

Solution: 

We have: 

𝑐𝑐1 = 𝑀𝑀𝑦𝑦1 = 60 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑖𝑖1 = 17 

𝑐𝑐2 = 𝑀𝑀𝑦𝑦2 = 53 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑖𝑖2 = 23 

gcd(17,23) = 1 

Our goal is to find x and  y s. t. 17𝑥𝑥 + 23𝑦𝑦 = 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛 because we would have decrypted the message without knowing 
anything else about it as: 𝑀𝑀𝑦𝑦1𝑥𝑥+𝑦𝑦2𝑦𝑦 = 𝑀𝑀 𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛 

In order to find such number, we need to find the Bézout identity and a way is to use the extended Euclidian algorithm 
as follows: 

 

 

 

 

 

After having highlighted the reminders we can collapse all the equation inside the last one obtaining, as we’d imagine 
the gcd(17,23) expressed in terms of those two numbers: 

1 = 3(23) − 4(17) 

𝑥𝑥 = −4, 𝑦𝑦 = 3 

Now we only have to just compute: 

𝑀𝑀𝑦𝑦1𝑥𝑥+𝑦𝑦2𝑦𝑦 = (60−4 ⋅ 533) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛 = 37 ∎ 

  

Euclidean Algorithm Highlighting the reminders 
 

23 = 17 ∗ (1) + 6 
17 = 6 ∗ (2) + 5 
6 = 5 ∗ (1) + 1 
5 = 5 ∗ (1) + 0 

6 =  23 − 17 ∗ (1) 
5 =  17 − 6 ∗ (2) 
1 =  6 − 5 ∗ (1) 



Exercise 4 
4: verifiable Secret Sharing 

Let p=83 and q=(p-1)/2 = 41.  

Assume a (2,n) Verifiable Secret Sharing scheme with Modulus 41 which uses the Feldmann scheme with g=10 and 
modulus 83. The commitments are: 

C0 = 23 

C1 = 4 

Party P7 (x=7) receives share s7 = 29: verify that this is a valid share. 

 

Solution: 

Having the initial commitments, computing it for x = 7 is immediate: 

𝑐𝑐0 = 𝑖𝑖𝑦𝑦 𝑣𝑣𝑛𝑛𝑚𝑚 𝑐𝑐1 = 𝑖𝑖𝑎𝑎1 → 𝑖𝑖𝑝𝑝(𝑥𝑥) = 𝑖𝑖𝑦𝑦+𝑥𝑥⋅𝑎𝑎1 

𝑐𝑐7 = 𝑖𝑖𝑦𝑦+7⋅𝑎𝑎1 = 𝑐𝑐0 ⋅ 𝑐𝑐17 = 23 ⋅ 47 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 = 𝟏𝟏𝟏𝟏 

We can now verify it against the supposed shares received: 𝑖𝑖29𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 = 1029 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 = 𝟏𝟏𝟏𝟏 ∎ 

  



Exercise 5 
5: Find elliptic Curve Points 

Consider the Elliptic curve  

𝑦𝑦2  =  𝑥𝑥3  +  2𝑥𝑥 +  1 

defined over the modular integer field Z5: 

find all the points EC(Z5) 

 

Solution 

Given any point that lies in an EC it induce a subgroup on the elliptic curve, we can compute all elliptic 
curve points as sums of a given point.  

Let P = (0,1) clearly it lies on the EC, we can now sum it to itself to obtain [2]P that would be another point. 

• [2]P = (𝑥𝑥2,𝑦𝑦2) = (1,3) 
o 𝜆𝜆2 = 3𝑥𝑥1+𝑎𝑎

2𝑦𝑦1
= 2

2
 𝑚𝑚𝑚𝑚𝑚𝑚 5 = 1 𝑚𝑚𝑚𝑚𝑚𝑚 5 

o 𝑥𝑥2 = 𝜆𝜆22 − 2𝑥𝑥1 = 1 𝑚𝑚𝑚𝑚𝑚𝑚 5 
o 𝑦𝑦2 = 𝜆𝜆2(𝑥𝑥1 − 𝑥𝑥2)− 𝑦𝑦1 = 1(0 − 1) − 1 = −2 𝑚𝑚𝑚𝑚𝑚𝑚 5 = 3 𝑚𝑚𝑚𝑚𝑚𝑚 5 

 
• [3]P = [2]P + P = (1,3) + (0,1 ) = (𝑥𝑥3,𝑦𝑦3) = (3,3) 

o 𝜆𝜆3 = 𝑦𝑦2−𝑦𝑦1
𝑥𝑥2−𝑥𝑥1

= 2 𝑚𝑚𝑚𝑚𝑚𝑚 5 

o 𝑥𝑥3 = 𝜆𝜆32 − 𝑥𝑥2 − 𝑥𝑥3 = 3 𝑚𝑚𝑚𝑚𝑚𝑚 5 
o 𝑦𝑦3 = 𝜆𝜆3(𝑥𝑥2 − 𝑥𝑥3)− 𝑦𝑦2 = 2(1− 3) − 3 = −7 𝑚𝑚𝑚𝑚𝑚𝑚 5 = 3 𝑚𝑚𝑚𝑚𝑚𝑚 5 

 
• [4]P = (𝑥𝑥4,𝑦𝑦4) = (3,2) 

o 𝜆𝜆4 = 𝑦𝑦3−𝑦𝑦2
𝑥𝑥3−𝑥𝑥2

= 2
3

 𝑚𝑚𝑚𝑚𝑚𝑚 5 = 4 𝑚𝑚𝑚𝑚𝑚𝑚 5 

o 𝑥𝑥4 = 𝜆𝜆42 − 𝑥𝑥3 − 𝑥𝑥2 = 3 𝑚𝑚𝑚𝑚𝑚𝑚 5 
o 𝑦𝑦4 = 𝜆𝜆4(𝑥𝑥3 − 𝑥𝑥4)− 𝑦𝑦3 = 4(3 − 3) − 3 = −3 𝑚𝑚𝑚𝑚𝑚𝑚 5 = 2 𝑚𝑚𝑚𝑚𝑚𝑚 5 

 
• [5]P = (𝑥𝑥5,𝑦𝑦5) = (1,2) 

o 𝜆𝜆5 = 𝑦𝑦4−𝑦𝑦3
𝑥𝑥4−𝑥𝑥3

= 1
3

 𝑚𝑚𝑚𝑚𝑚𝑚 5 = 2 𝑚𝑚𝑚𝑚𝑚𝑚 5 

o 𝑥𝑥5 = 𝜆𝜆52 − 𝑥𝑥4 − 𝑥𝑥3 = 1 𝑚𝑚𝑚𝑚𝑚𝑚 5 
o 𝑦𝑦5 = 𝜆𝜆(𝑥𝑥4 − 𝑥𝑥5) − 𝑦𝑦4 = 2(3 − 1) − 2 = 2 𝑚𝑚𝑚𝑚𝑚𝑚 5 

 
• [6]P = (𝑥𝑥6,𝑦𝑦6) = (0,4) 

o 𝜆𝜆6 = 𝑦𝑦5−𝑦𝑦4
𝑥𝑥5−𝑥𝑥4

= 1 𝑚𝑚𝑚𝑚𝑚𝑚 5 

o 𝑥𝑥6 = 𝜆𝜆62 − 𝑥𝑥5 − 𝑥𝑥4 = 0 𝑚𝑚𝑚𝑚𝑚𝑚 5 
o 𝑦𝑦6 = 𝜆𝜆(𝑥𝑥5 − 𝑥𝑥6) − 𝑦𝑦5 = 1(1 − 0) − 2 = −1 𝑚𝑚𝑚𝑚𝑚𝑚 5 = 4 𝑚𝑚𝑚𝑚𝑚𝑚 5 

After this point futher sums leads to point that doesn’t lies on the EC, or restart the cycle. So all the point 
found so far, lies on the EC and are the only points that the EC generates.  

Another possible method would be to check if all the point (= the pairs given by [0,4]X[0,4] ) does or does 
not lies on the EC ∎ 

 



Notes on the Quadratic Residues 

It does exist another method to calculate the cardinality of the EC and all of its point that relies on the 
quadratic residues mod n as follows: 

In number theory, an integer q is called a quadratic residue modulo n1  if it is congruent to a perfect square 
modulo n; i.e., if there exists an integer x such that: 

    𝑥𝑥2  ≡  𝑞𝑞 ( 𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛 ) 

Otherwise, q is called a quadratic nonresidue modulo n. 

 

In order to calculate all points we can do as follows: 

Let E be the curve defined as above: 𝑦𝑦2 = 𝑥𝑥3 + 2𝑥𝑥 + 1 mod 5 
Let’s write a simple table were we populate ∀ 𝑥𝑥 ∈ [0,5] their quadratic residues mod 5 

Now, solving the above equation for 𝑥𝑥𝑖𝑖 means find 𝑦𝑦 𝑠𝑠. 𝑡𝑡.  𝑦𝑦2  = 𝑥𝑥𝑖𝑖3  + 2𝑥𝑥𝑖𝑖  + 1 𝑚𝑚𝑚𝑚𝑚𝑚 5  
But having now filled the table of possible quadratic residues 𝑦𝑦2  has to be equal to  
one or more terms in the x column. 

 

In order to be more precise and clear we now create a table summing up all the information so far gathered, 
and we will see that it would be much simpler now to find all possible points. 

 

The last column is populated like this: ( 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗 𝑠𝑠. 𝑡𝑡.𝑦𝑦𝑖𝑖2 𝑚𝑚𝑚𝑚𝑚𝑚 5 =  𝑥𝑥𝑗𝑗2 𝑚𝑚𝑚𝑚𝑚𝑚 5 ) indeed when 𝒚𝒚𝟏𝟏 = 𝟑𝟑 there is no 
𝒙𝒙𝒋𝒋 s. t. 𝒙𝒙𝒋𝒋𝟏𝟏 = 𝟑𝟑 𝒎𝒎𝒎𝒎𝒎𝒎 𝟓𝟓∎ 

 

  

 
1 https://en.wikipedia.org/wiki/Quadratic_residues 

𝒙𝒙 𝒙𝒙𝟏𝟏 𝒎𝒎𝒎𝒎𝒎𝒎 𝟓𝟓 𝒚𝒚𝟏𝟏 = 𝒙𝒙𝟑𝟑 + 𝟏𝟏𝒙𝒙 + 𝟏𝟏 Points 
0 0 1 (0,1),(04) 
1 1 4 (1,2),(1,3) 
2 4 3 - 
3 4 4 (3,2),(3,3) 
4 1 3 - 

 

𝒙𝒙 𝒙𝒙𝟏𝟏 𝒎𝒎𝒎𝒎𝒎𝒎 𝟓𝟓 
0 0 
1 1 
2 4 
3 4 
4 1 

 



Exercise 6 
6: Pairing Based crypto 

Being e: GxGGt a bilinear map, and g a generator of G, simplify the expression: 

e(gx x gy, gz)w / e(gwz, gx)   

 

Solution: 

Given all the hypothesis we can rewrite it like this: 

𝑖𝑖(𝑖𝑖𝑥𝑥 ⋅ 𝑖𝑖𝑦𝑦,𝑖𝑖𝑧𝑧)𝑤𝑤

𝑖𝑖(𝑖𝑖,𝑖𝑖)𝑥𝑥𝑤𝑤𝑧𝑧 =
𝑖𝑖�(𝑥𝑥+𝑦𝑦)𝑤𝑤𝑧𝑧

𝑖𝑖�𝑥𝑥𝑤𝑤𝑧𝑧
= 𝑖𝑖�(𝑥𝑥−𝑥𝑥+𝑦𝑦)𝑤𝑤𝑧𝑧 = 𝑖𝑖�𝑦𝑦𝑤𝑤𝑧𝑧∎ 
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