
Security Definition
SEMANTIC SECURITY

How to evaluate cipher’s security?
Choose an attacker model (attacker’s abilities)

◦ He can obtain the ciphertext

◦ Ciphertext-only attacks (COA)

The cipher is “secure” if
◦ Attacker cannot recover secret key

◦ Ciphertext does not reveal information about the key

◦ Attacker cannot recover the plaintext
◦ Ciphertext does not reveal information about the plaintext

How to evaluate cipher’s security?
Choose an attacker model (attacker’s abilities)

◦ He can obtain the ciphertext

◦ Ciphertext-only attacks (COA)

The cipher is “secure” if
◦ Attacker cannot recover secret key

◦ Ciphertext does not reveal information about the key

�(�, �) = �

◦ Attacker cannot recover the plaintext
◦ Ciphertext does not reveal information about the plaintext

�(�, ��||��) = ��|| �� ⊕ �

Which is our security goal?
Adversary knows that

m :=
“I love you” with prob. 0.5

“I don’t love you” with prob. 0.5

Adversary still knows that

m :=
“I love you” with prob. 0.5

“I don’t love you” with prob. 0.5

m

m
� ← �(�, �)

Adversary Advantage
Define encryption of messages as experiments

◦ ��� 0 → encrypt ��

◦ ��� 1 → encrypt ��

◦ Define event: �� = {���(�) = 1}

◦ Define advantage: ���[�, �] = |� �� − � �� |
◦ ��� = 1 → Adversary distinguish � = 0 and � = 1

◦ ��� = 0 → Adversary cannot distinguish � = 0 and � = 1

�� , �� ∈ �, ���ℎ |��| = |��|

� ← �(�, ��)

Adversary
A

�
�
← {0,1}

Challenger

Semantic Security
Encryption algorithm � is semantically secure if

��� �, � < � → is negligible

◦ For all efficient algorithm A

◦ For all explicit ��, �� ∈ � s.t.

�{�(�, ��) = �} = �{�(�, ��) = �}

Cannot distinguish encryption of different messages

Attacks on the implementations
Attacker wants to distinguish operations

◦ Side channel attacks
◦ Timing attack

◦ Power monitoring

◦ Electromagnetic monitoring

◦ Acoustic attack

◦ Fault attacks
◦ Induce errors in computation or memory

Implementation accuracy foundamental!

Attacks on the implementations
Example: Acoustic cryptanalysis, Crypto 2014

Computers emit noise due to vibration of their components

If computer computes with secret key, then
noise pattern depends on key extract key

Attacks on the implementations
Example: Acoustic cryptanalysis, Crypto 2014

Computers emit noise due to vibration of their components

If computer computes with secret key, then
noise pattern depends on key extract key

Send encrypted
emails

Decrypt emails
with secret key

Record noise

Extract secret key
from noise pattern

Model does not cover all real
world attacks!

Model

Reality

Model does not cover all real
world attacks!

Symmetric Ciphers
BLOCK CIPHERS

Symmetric Cipher

A symmetric cipher is defined as
◦ �(⋅,⋅) → Encryption Algorithm

◦ �(⋅,⋅) → Encryption Algorithm

◦ � → Secret Key

We have two types of messages
◦ � → Plaintext (original message)

◦ �� → Ciphertext (encrypted message)

Common key and common cipher!

E(m, k) D(CT, k)

m CT m

k k

One Time Pad
Perfect secrecy but not easy to apply

◦ Truly random key

◦ Same key and plaintext size

◦ Different keys for different encryptions

◦ �� = �(�, �) = � ⊕ �

◦ �(�, ��) = � ⊕ ��

⨁
m CT m

k
k

⨁

Stream Cipher
Approximating OTP

◦ Replace random key with pseudo-random

◦ Exploits PRG to replace the key

◦ One truly random key used as seed

◦ �� = �(�, �) = ���(�) ⊕ �

◦ �(�, ��) = ���(�) ⊕ ��

E(m, k’) D(CT, k’)

m CT m

PRG(k) PRG(k)k k

Properties of Good Ciphers
Confusion and diffusion are two properties of the operation of a

secure cipher which were identified by Shannon in 1949.

Confusion refers to making the relationship between the key and the ciphertext as complex as
possible

◦ Substitution is one of the mechanism for primarily confusion

Diffusion refers to the property that redundancy in the statistics of the plaintext is "dissipated"
in the statistics of the ciphertext

◦ Transposition (Permutation) is a technique for diffusion

Block Ciphers
Mostly based on a Feistel Cipher Structure

◦ Takes one block (plaintext) and transform it into a block of the same length using a the provided secret
key

◦ Decrypt by applying the reverse transformation to the ciphertext block using the same secret key

◦ Encrypt/Decrypt blocks of data of fixed length (e.g. 64bits, 128bits, etc…)

E(∙, ∙) D(∙, ∙)

m

Alice Bob

m

B
lo

ck
s

CT

k

B
lo

ck
s

……

k

Block Ciphers
Fixed key and block length

◦ DES: � = 64 ����, � = 56 ����

◦ 3-DES:� = 64 ����, � = 168 ����

◦ RC6: � = 128 ����, � = 128/192/256 ����

◦ AES:� = 128 ����, � = 128/192/256 ����

E(∙, ∙) D(∙, ∙)

m

Alice Bob

m

B
lo

ck
s

CT

k

B
lo

ck
s

……

k

Stream vs Block Ciphers

E(∙, ∙) D(∙, ∙)

m

Alice Bob

m

B
lo

ck
s

CT

k

B
lo

ck
s

……

E(m, k’) D(CT, k’)

m CT m

PRG(k) PRG(k)k k

k

Block Ciphers
COMPONENTS

Substitution and Permutation
In 1949, Shannon introduced the idea of substitution-permutation (S-P) networks which form the
basis of modern block ciphers

S-P networks are based on the two primitives:
◦ Substitution (S-box) Confusion

◦ Permutation (P-box) Diffusion

A good block cipher uses also:
◦ XOR

◦ Circular Shift

◦ Swap

◦ Split and Combine

Permutation Boxes
A P-Box (permutation box) is like
◦ The traditional transposition cipher for characters

◦ But it transposes bits
1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3

1 2 3

1 2 3 4 5

Straight
P-Box

Compression
P-Box

Expansion
P-Box

Permutation Boxes: Example
Straight P-Box: n (inputs) x n (outputs)

◦ Example 64x64 permutation table

Compression P-Box: n (inputs) x m (outputs) � < �
◦ Example 32x24 permutation table

Expansion P-Box: n (inputs) x m (outputs) � > �
◦ Example 12x16 permutation table

Permutation Boxes: Example
Straight P-Box: n (inputs) x n (outputs)

Compression P-Box: n (inputs) x m (outputs) � < �

Expansion P-Box: n (inputs) x m (outputs) � > �

Which one is invertible?

Permutation Boxes: Example
Straight P-Box: n (inputs) x n (outputs)

Compression P-Box: n (inputs) x m (outputs) � < �

Expansion P-Box: n (inputs) x m (outputs) � > �

Which one is invertible?

Permutation Boxes: Example
Straight 3x3 P-Box (permutation box)
◦ 6 possible mappings

◦ Same number of inputs and outputs

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1

Substitution Boxes
An S-Box (substitution box) is

◦ A box that realizes a miniature substitution cipher

◦ Is an � � � substitution cipher

◦ Invertible if � = � !

00 01 10 11

0 00 10 01 11

1 10 00 11 01

00 01 10 11

0 011 101 111 100

1 000 010 001 110

Leftmost

Rightmost

Substitution Boxes: Examples
Invertible if same input and output size

◦ If the input to the left box is 001, the output is 101

◦ The input 101 in the right table creates the output 001

◦ The two tables are inverses of each other

00 01 10 11

0 011 101 111 100

1 000 010 001 110

00 01 10 11

0 100 110 101 000

1 011 001 111 010

Encryption S-Box Decryption S-Box

Other components
Circular Shift

◦ Shift bits to the left or to the right

Swap
◦ Particular case of the shift

◦ Size of shift = �/2

Split & Combine
◦ In encryption we need to split words

◦ In decryption we need to re-combine words

Encrypt by iterations
High level structure

◦ Define � rounds

◦ Derive ��..� keys

◦ Iteratively apply round functions �(��, ��) to each block
◦ DES: 16 rounds 3-DES: 48 rounds (16x3)

◦ AES: 10 rounds
k

��
�� ��

m

CT

…

…

��
��

��

��
��

��

Encrypt by iterations
8-bit Plaintext

R
o

u
n

d
 keys gen

erato
r

K

Encrypt by iterations
8-bit Plaintext

Key Mixer

S-Box 1 S-Box 2 S-Box 3 S-Box 4

P-Box

Middle Text

R
o

u
n

d
 keys gen

erato
r

K

��

Encrypt by iterations
8-bit Plaintext

Key Mixer

S-Box 1 S-Box 2 S-Box 3 S-Box 4

P-Box

Middle Text

Key Mixer

S-Box 1 S-Box 2 S-Box 3 S-Box 4

P-Box

8-bit Ciphertext

R
o

u
n

d
 keys gen

erato
r

K

��

��

Performance
Iterations (rounds) drawback

◦ Stream Ciphers notably faster than Block Ciphers

◦ Crypto++ benchmarks (http://www.cryptopp.com/benchmarks.html)

Cipher Block Size Key Size Throughput [MB/s]

RC4 - - 126

Salsa20/12 - - 674

Sosemanuk - - 767

DES 64 56 46

3-DES 64 168 17

AES 128 128 148

Block Ciphers
FEISTEL NETWORK

Motivation for Feistel Network
Product cipher

◦ Sequence of two or more simple ciphers

◦ Final result or product is cryptographically stronger than any of the component ciphers

S-P network
◦ A special form of substitution-permutation product cipher

◦ Feistel Network

◦ Non-Feistel Network

Motivation for Feistel Network
Feistel ciphers

◦ In 1970’s, Horst Feistel (IBM) proposed a suitable (and practical) structure for Shannon’s S-P network

◦ Encryption and decryption use the same structure

◦ Three types of components:
◦ Self-invertible

◦ Invertible

◦ Non-Invertible

Non-Feistel ciphers
◦ Only invertible components

◦ A component in the encryption cipher has the corresponding component in the decryption cipher

Feistel Network
First sketch of the Feistel design

◦ Any function �(�)

Plaintext

+ �(�)

Ciphertext

K

Plaintext

+ �(�)

Ciphertext

K

Feistel Network
Improvement of the Feistel design

◦ Any function �(�, ��)

��

+
�(��, �) K

��

�� ��

��

+
�(��, �) K

��

�� ��

Feistel Network
Improvement of the Feistel design

◦ Any function �(�, ��)

◦ Swap output of each round

��

+
�(��, �) K

��

�� ��

��

+
�(��, �) K

��

�� ��

Feistel Network
Block size

◦ Increasing size improves security

Key size
◦ Increasing size improves security
◦ Makes exhaustive key searching harder

Number of rounds
◦ Increasing number improves security

Sub-key generation
◦ Greater complexity can make analysis harder

Round function
◦ Greater complexity can make analysis harder

Slows encryption/decryption

Feistel Network
Make the network

◦ Use generic round functions
◦ ��, … , ��: 0,1 � → 0,1 �

◦ To make invertible function
◦ � ��, … , �� : 0,1 �� → 0,1 ��

◦ �
���� = ��⨁����(��)
���� = ��

R0

L0

n
-b

its R1

L1

f1

R2

L2

⋯
⨁

f2

⨁

Rd-1

Ld-1

Rd

Ld

fd

⨁

n
-b

its

Feistel Network
Always invertible

◦ Even if �� is not invertible

Ri

Li

fi+1

⨁

Ri+1

Li+1

inverse

�
���� = ��⨁����(��)
���� = ��

inverse

Feistel Network
Always invertible

◦ Even if �� is not invertible

Ri

Li

fi+1

⨁

Ri+1

Li+1

inverse

�
���� = ��⨁����(��)
���� = ��

inverse

Ri+1

Li+1

⨁ Ri

Li

�
�� = ����
�� = ����⨁����(����)

fi+1

Feistel Network: Encryption/Decryption

R0

L0

n
-b

its R1

L1

f1

R2

L2

⋯
⨁

f2

⨁

Rd-1

Ld-1

Rd

Ld

fd

⨁

Rd

Ld

fd

⨁ Rd-1

Ld-1

fd-1

⨁ Rd-2

Ld-2

⋯
R1

L1

f1

⨁ R0

L0

n
-b

its
n
-b

its
n
-b

its

Feistel Network
Decryption is basically the same circuit

◦ Applied in the inverse order

◦ i.e. ��, … , �� ��, … , ��

General methodology to build ciphers
◦ Arbitrary atomic function (also not invertible)

◦ Always invertible

Design for many block ciphers
◦ DES

◦ 3-DES

◦ RC5

◦ …Not AES…

Feistel Network: two-rounds
Never use two-rounds Feistel network

◦ It is not secure

◦ Suppose �� = �(��,⋅) is a secure function

◦ Compare and exploit output from:
◦ �� = 0000

◦ �� = 0011

Rin

Lin ⨁

n
-b

its R1

L1

f1

R2

L2

f2

⨁

n
-b

its

Feistel Network: two-rounds

00

00

2
-b

its R1

00

f1

R2

R1⨁

f2

⨁

00 ⊕ �(��, ��)

00 ⊕ �(��, 00)

00

11

R1

00

f1

R2

R1⨁

f2

⨁

2
-b

its
2
-b

its
2
-b

its

00 ⊕ �(��, ��)

11 ⊕ �(��, 00)

��

��

Feistel Network: two-rounds

00

00

2
-b

its R1

00

f1

R2

R1⨁

f2

⨁

00 ⊕ �(��, ��)

00 ⊕ �(��, 00)

00

11

R1

00

f1

R2

R1⨁

f2

⨁

2
-b

its
2
-b

its
2
-b

its

00 ⊕ �(��, ��)

11 ⊕ �(��, 00)

��

��

⨁ 11

Block Ciphers
DATA ENCRYPTION STANDARD

Encryption Standardization
1960

◦ The first commercial Feistel Cipher developed by IBM
◦ Lucifer by Feistel and Coppersmith

1972
◦ US National Bureau of Standards (NBS) call for proposals

1974-1977
◦ Lucifer refined, renamed the Data Encryption Algorithm (DEA)
◦ Adopted as standard by NBS
◦ First official U.S. government cipher for commercial use
◦ Most widely used block cipher

1997
◦ DES theoretically broken

◦ Exhaustive search

◦ Differential and linear cryptanalysis

DES Structure
Basic process to encrypt a 64-bit data block

◦ Initial permutation (IP) which shuffles the 64-bit input block

◦ 16 rounds of a complex key dependent round function
◦ Involving substitutions & permutations

◦ Final permutation, being the inverse of IP

m CT

k1 k2 k16

IP ��−1

k

DES Structure
16 sub-keys are derived by the 64-bit key (56+8 parity):

◦ Initial permutation of the key (K)
◦ Selects 56-bits out of the 64-bits input, in two 28-bit halves

◦ 16 stages to generate the 48-bit sub-keys
◦ Using a left circular shift and a permutation of the two 28-bit halves

m C
T

k1 k2 k1

6

IP ��−1

k

DES: Feistel Round Function

Ri

P

48 bit

ki+1⨁

6 bit

S1

4 bit

S2 S3 S4 S5 S6 S7 S8

E

32 bit 48 bit

32 bit

DES Overview

DES Decryption
Decrypt must “undo” steps of data computation
◦ Exploit Feistel design, do encryption steps again

◦ Using sub-keys in reverse order (��� … ��)

Note that
◦ IP complement final FP step of encryption

◦ 1st round with ��� undoes 16th encrypt round

◦ 16th round with �� undoes 1st encrypt round

◦ Then final FP undoes initial encryption IP

DES Properties
The avalanche effect

◦ A change of one input bit or key bit should result in changing approx half of output bits!

◦ Making attempts to guess the key by using different Plaintext – Ciphertext pairs should be
impossible

◦ DES exhibits strong avalanche

The completeness
◦ Each bit of the ciphertext depend on many bits on the plaintext

DES Security
Among the attempted attacks, three are of interest:
◦ Brute-force/Exhaustive search

◦ Short cipher key

◦ Key complement weakness

◦ Differential cryptanalysis
◦ Designers of DES already knew about this type of attack

◦ Designed S-boxes and 16 as the number of rounds to make DES specifically resistant to this type of attack

◦ Linear cryptanalysis
◦ S-boxes are not very resistant to linear cryptanalysis

◦ DES can be broken using 2�� pairs of known plaintexts

Breaking DES
Time to break DES
◦ Number of keys: 2�� = 7.2 � 10�� keys

◦ On the average you need to search through 2�� keys

◦ In the worst case you need to search all 2�� keys

◦ If one encryption/decryption in 1 clock cycle @ 500 MHz
◦ Time taken to check ONE key = 1/(500 � 10�) �

◦ Time taken to check 2�� keys =
���

��� � ��� � = 834 days

Cost to break DES
◦ At $20 per chip, to break DES in one day

◦ Need to spend $16,680

Breaking DES
Key Size

(bits)
Number of

Alternative Keys
Time required at 1

decryption/µs
Time required

at 106

decryptions/µs

32 232 = 4.3 x 109 231 µs = 35.8 minutes 2.15 ms

56 256 = 7.2 x 1016 255 µs = 1142 years 10.01 hours

128 2128 = 3.4 x 1038 2127 µs = 5.4 x 1024 years 5.4 x 1018 years

168 2168 = 3.7 x 1050 2167 µs = 5.9 x 1036 years 5.9 x 1030 years

26 characters
(permutation)

26! = 4 x 1026 2 x 1026 µs = 6.4 x 1012

years
6.4 x 106 years

Breaking DES
Weak Keys
◦ Symmetry of bits in the 32 bit halves makes the key weak

◦ Roughly 64 weak keys, e.g.:
◦ Alternating ones + zeros (0x0101010101010101)

◦ Alternating 'F' + 'E' (0xFEFEFEFEFEFEFEFE)

◦ '0xE0E0E0E0F1F1F1F1' or '0x1F1F1F1F0E0E0E0E'

◦ A complement of key will encrypt the complement of a plaintext into the complement of the ciphertext

Number of rounds
◦ Six round DES was broken very early on

◦ Less than 16 rounds makes DES less secure

Breaking DES
Some weaknesses in DES
◦ Weaknesses in S-boxes

◦ Weaknesses in P-boxes

◦ Weaknesses in Key

The major criticism of DES regards its key length
◦ We can use double or triple DES to increase the key size

◦ 2-DES (Double)

◦ 3-DES (Triple)

◦ We could then preserve the existing software and hardware

Double DES
Apply two iterations of DES

◦ Using two different keys �� and ��

◦ 2��� ��, ��, � = ���(��, ���(��, �))

Known-plaintext attack
◦ 1992: Meet-in-the-middle attack

◦ Double DES improves this vulnerability slightly
◦ 2�� trials, but not tremendously to 2���

m �′ �

�(��, �) �(��, �′)

Meet In The Middle
For given � and �

◦ Search only O(2��) pairs of keys �� and ��

◦ At the intermediate message �′

◦ Encrypt M under all 2�� options for ��

◦ Denote the results by �′�, �′�, . . . , �′�

M �′ �

�(��, �) �(��, �′)

Key �′

000 … 000 ��′

000 … 001 ��′

… …

111 … 111 ��′

Meet In The Middle
For given � and �

◦ Search only O(2��) pairs of keys �� and ��

◦ At the intermediate message �′

◦ Decrypt � under all 2�� options for ��

◦ Denote the results by �′′�, �′′�, . . . , �′′�

M �′ �

�(��, �) �(��, �′)

Key �′′

000 … 000 �′′�

000 … 001 �′′�

… …

111 … 111 �′′�

�(�′, �)

Meet In The Middle
At least one match of �� with two keys (�� and ��)

◦ If there is only match found the key

◦ If there is more than one take another pair

◦ This is repeated until a unique pair found

Key �′′

000 … 000 �′′�

000 … 001 �′′�

… …

111 … 111 �′′�

Key �′

000 … 000 ��′

000 … 001 ��′

… …

111 … 111 ��′

Triple DES
DES Encrypt-Encrypt-Encrypt Mode:

◦ Three keys ��, ��, �� (168 bits)

◦ Strength �(2���) against Meet-in-the-Middle

◦ Not compatible with regular DES

M �

�(��, �) �(��, �′′)�(��, �′)

Triple DES
DES Encrypt-Decrypt-Encrypt Mode:

◦ Two keys �� and ��(112 bits)

◦ Two keys Strength �(2���) against Meet-in-the-Middle

◦ Compatible with regular DES when �� = ��

M �

�(��, �) �(��, �′′)�(��, �′)

Double vs Triple DES
Double DES

◦ Meet in the middle weakness

◦ Time ≈ 2�� ∗ 2�� ≈ 2�� + 2�� = 2��

Triple DES
◦ Meet in the middle weakness

◦ But still secure

◦ Time ≈ 2�� ∗ 2�� = 2��� (… not 2���)

Why E-D-E?
◦ Initial and final permutations would cancel each other out with EEE (minor advantage to EDE)

◦ EDE compatible with single DES if same keys.

◦ Only 2 different Keys needed with E-D-E

Block Ciphers
ADVANCED ENCRYPTION STANDARD

The AES Standardization
1997

◦ NIST publishes request for proposal for DES successor

◦ Three selection criteria

◦ Security, Cost and Implementation

1998-1999
◦ 15 submissions – 5 finalists

◦ Rijndael: 86 positive, 10 negative

◦ Serpent: 59 positive, 7 negative

◦ Twofish: 31 positive, 21 negative

◦ RC6: 23 positive, 37 negative

◦ MARS: 13 positive, 84 negative

2001
◦ NIST chooses Rijndael as AES (designed in Belgium)

AES Overview
AES is a non-Feistel cipher

◦ Encrypts/Decrypts a data block of 128 bits

◦ Uses 10, 12, or 14 rounds

◦ Key size of 128, 192, or 256 bits

◦ Round sub-keys are always 128 bits

k1 k2 k9

m c

s

u

b

s

p

e

r

m

s

u

b

s

p

e

r

m

⨁ ⨁ ⋯ ⨁ ⨁

k10

Data Units in AES

State
Block-to-state and state-to-block transformation

Round’s structure

Substitution & Permutation

Mixing
Inter-byte transformation

◦ Changes the bits inside a byte

◦ Based on the bits inside the neighboring bytes

◦ Mix bytes to provide diffusion at the bit level

Key Adding
AddRoundKey proceeds one column at a time

◦ Adds a round key word with each state column matrix

◦ The operation is a matrix addition

AES Security
AES was designed after DES

◦ AES can be easily implemented
◦ Cheap processors and minimum amount of memory

◦ Known attacks on DES were already tested on AES

Brute-Force Attack
◦ AES is definitely more secure than DES
◦ The key is larger

Statistical Attacks
◦ Many tests failed to do statistical analysis of the ciphertext

Differential and Linear Attacks
◦ There are no differential and linear attacks on AES as yet

Block Ciphers
MODES OF OPERATIONS

Encryption Modes Motivation
What if the message size shorter or larger than the block size?

◦ Say, message Size = 224-bit

◦ Block Cipher Supported = 64-bit DES

◦ Block Cipher Supported = 128-bit AES

◦ Adapt cryptographic algorithm to applications

◦ Increase the strength of a cryptographic algorithm

◦ It is necessary to divide bigger plaintext into fixed sized blocks so that cipher can work on it (i.e.DES-
64bit)

Conventional Modes of Operations
Electronic Codebook Mode (ECB)

Cipher Block Chaining Mode (CBC)

Counter Mode (CTR)

Cipher Feedback Mode (CFB)

Output Feedback Mode (OFB)

Electronic CodeBook
Message is broken into independent blocks

◦ Each block is encrypted

◦ each block is a value which is substituted
◦ Like a codebook, hence name

◦ Each block is encoded independently of the other blocks

◦ Uses:
◦ Secure transmission of single values

Electronic CodeBook: Limitations
Message repetitions may show in ciphertext

◦ If aligned with message block

◦ Particularly with data such graphics

◦ With messages that change very little
◦ Become a code-book analysis problem

Weakness due to encrypted blocks independent

Main use is sending a few blocks of data

Electronic CodeBook: Limitations
Does not hide data patterns

◦ Unsuitable for long messages

◦ Wiki example: pixel map using ECB

Susceptible to replay attacks
◦ Example: a wired transfer transaction can be replayed by resending the original message

ECB

Electronic CodeBook: Limitations
Does not hide data patterns

◦ Unsuitable for long messages

◦ Wiki example: pixel map using ECB

Susceptible to replay attacks
◦ Example: a wired transfer transaction can be replayed by resending the original message

ECB Other

ECB: Semantic Security
Given algorithm A

◦ That compares ciphertexts

◦ A: if �� = �� output 0; if �� ≠ �� output 1

◦ ��� �, ��� = 1
◦ Adversary distinguishes between �� and ��

m0 = Hello World
m1 = Hello Hello

� ⟵ �(�, ��)

Challenger Adversary
A

� = {0,1}

Cipher Block Chaining
Message is broken into blocks

◦ Linked together in encryption operation

◦ Each previous cipher blocks is chained with current plaintext block, hence name

◦ Use Initial Vector (IV) to start process
◦ �� = ��(�� ��� ����)

◦ ��� = ��

◦ Uses:
◦ Bulk data encryption

◦ Authentication

CBC Encryption/Decryption

CBC: Advantages and Limitations
A ciphertext block depends on all blocks before it

◦ Any change to a block affects all following blocks

Need Initialization Vector (IV)
◦ Must be known to sender & receiver

◦ If sent in clear, attacker can change bits of first block and change IV to compensate

◦ Hence IV must either be
◦ A fixed value

◦ Must be sent encrypted in ECB mode before rest of message

Stream Modes
Block modes encrypt entire block

◦ May need to operate on smaller units

Real time data?
◦ Convert block cipher into stream cipher

◦ Cipher Feedback (CFB) mode

◦ Output Feedback (OFB) mode

◦ Counter (CTR) mode

Use block cipher as pseudo-random generator

Counter Mode
A “new” mode, though proposed early on

◦ Similar to OFB but encrypts counter value
◦ Rather than any feedback value

◦ Different key & counter value for every plaintext block
◦ Never reused!!

◦ �� = ��(�)

◦ �� = �� ��� ��

Uses:
◦ High-speed network encryptions

CTR Structure
Deterministic Counter Mode

◦ Chunk the plaintext

◦ Encrypt a counter

◦ Encrypt as a stream cipher

◦ Secure if function �() is secure!

CTR: Advantages and Limitations
Efficiency

◦ Can do parallel encryptions in h/w or s/w

◦ Can pre-process in advance of need

◦ Good for bursty high speed links

Random access to encrypted data blocks

Provable security (good as other modes)

But must ensure never reuse key/counter values
◦ Otherwise could break

