
Security	Definition
SEMANTIC	SECURITY



How	to	evaluate	cipher’s	security?
Choose	an	attacker	model	(attacker’s	abilities)
◦ He	can	obtain	the	ciphertext
◦ Ciphertext-only	attacks	(COA)

The	cipher	is	“secure”	if
◦ Attacker	cannot	recover	secret	key
◦ Ciphertext does	not	reveal	information	about	the	key

◦ Attacker	cannot	recover	the	plaintext
◦ Ciphertext does	not	reveal	information	about	the	plaintext
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Which	is	our	security	goal?
Adversary	knows	that	

m	:=	 “I	love	you”														with	prob.	0.5
“I	don’t	 love	you”				with	prob.	0.5

Adversary	still knows	that	

m	:=	 “I	love	you”														with	prob.	0.5
“I	don’t	 love	you”				with	prob.	0.5

m

m
-	 ← 	!(#, %)



Adversary	Advantage
Define	encryption	of	messages	as	experiments
◦ !/0 0 → encrypt	%)
◦ !/0 1 → encrypt	%+

◦ Define	event:	45 	= {!/0(7) 	 = 	1}
◦ Define	advantage:	9:;[9, !]	 = |> 4) − 	> 4+ |
◦ 9:; = 1 → Adversary	distinguish 7 = 0 and	7 = 1
◦ 9:; = 0 → Adversary	cannot	distinguish 7 = 0 and	7 = 1

%)		,%+ 		 ∈ 	A,BCDℎ	|%)|	=	 |%+|

-	 ← 	!(#,FG)

Adversary

A

7
H
←{0,1}

Challenger



Semantic	Security
Encryption	algorithm	! is	semantically	secure if

9:; 9,! < 	J → is	negligible

◦ For	all	efficient algorithm	A
◦ For	all	explicit	%),%+ ∈ A s.t.

>{!(#, %)) 	= 	-} 	= 	>{!(#, %+)	 = 	-}

Cannot	distinguish	encryption	of	different	messages



Example
Suppose	the	adversary	has	algorithm	A
◦ !/0 0 → 0
◦ !/0 1 → 1
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A
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Example

%),AKL %) =0
%+,AKL %+ = 1

-	 ← 	!(#,FG)
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Suppose	the	adversary	has	algorithm	A
◦ Can	deduce	MSB	of	PT…having	CT

◦ 45 	= !/0 7 = 	1
◦ 9:; 9, ! = 0− 1 = 1
◦ 9:; = 1 → Adversary	distinguish 7 = 0 and	7 = 1
◦ 9:; = 0 → Adversary	cannot	distinguish 7 = 0 and	7 = 1



Example:	One-Time	Pad
Take	the	of	course	secure	OTP
◦ Another	way	to	prove	his	security…semantic!
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Attacks	on	the	implementations
Attacker	wants	to	distinguish	operations
◦ Side	channel	attacks
◦ Timing	attack
◦ Power	monitoring
◦ Electromagnetic	monitoring
◦ Acoustic	attack

◦ Fault	attacks
◦ Induce	errors	in	computation	or	memory

Implementation	accuracy	foundamental!



Attacks	on	the	implementations
Example: Acoustic cryptanalysis, Crypto 2014

Computers emit noise due to vibration of their components

If computer computes with secret key, then 

noise pattern depends on key è extract key



Attacks	on	the	implementations
Example: Acoustic cryptanalysis, Crypto 2014

Computers emit noise due to vibration of their components

If computer computes with secret key, then 

noise pattern depends on key è extract key

Send encrypted 

emails

Decrypt emails 

with secret key

Record noise

Extract secret key

from noise pattern



Model	does	not	cover	all	real	
world	attacks!

Model



Reality

Model	does	not	cover	all	real	
world	attacks!



Symmetric	Ciphers
BLOCK	CIPHERS



Symmetric	Cipher

A	symmetric	cipher	is	defined	as
◦ !(⋅,⋅) → Encryption	Algorithm
◦ O(⋅,⋅) → Encryption	Algorithm
◦ P	 →	Secret	 Key

We	have	two	types	of	messages
◦ A → Plaintext	(original	message)
◦ QR → Ciphertext (encrypted	message)

Common	key	and	common	cipher!

E(m, k) D(CT, k)

m
CT

m

k k



One	Time	Pad
Perfect	secrecy	but	not	easy	to	apply
◦ Truly	random key
◦ Same	key	and	plaintext	size
◦ Different	keys	for	different	encryptions

◦ QR = 	!(P,A) 	= 	P	 ⊕ 	A
◦ O(P, QR) 	= 	P	 ⊕ 	QR

⨁
m

CT
m

k
k

⨁



Stream	Cipher
Approximating	OTP
◦ Replace	random key	with	pseudo-random
◦ Exploits	PRG	to	replace	the	key
◦ One	truly	random	key	used	as	seed

◦ QR = 	!(P,A) 	= 	>ST(P) 	⊕ 	A
◦ O(P, QR) 	= 	>ST(P) 	⊕ 	QR

E(m, k’) D(CT, k’)

m
CT

m

PRG(k) PRG(k)
k k



Properties	of	Good	Ciphers
Confusion	and diffusion are	two	properties	of	the	operation	of	a	

secure	cipher		which	were	identified	by	Shannon in	1949.

Confusion refers	to	making	the	relationship	between	the	key	and	the	ciphertext as	complex	as	
possible
◦ Substitution is	one	of	the	mechanism	for	primarily	confusion

Diffusion refers	to	the	property	that	redundancy	in	the	statistics	of	the	plaintext	is	"dissipated"	
in	the	statistics	of	the	ciphertext
◦ Transposition (Permutation)	 is	a	technique	for	diffusion



Block	Ciphers
Mostly	based	on	a	Feistel Cipher	Structure
◦ Takes	one	block	(plaintext)	and	transform	it	into	a	block	of	the	same	length	using	a	the	provided	 secret	
key

◦ Decrypt	by	applying	 the	reverse	transformation	 to	the	ciphertext block	using	the	same	secret	key
◦ Encrypt/Decrypt	blocks	of	data	of	fixed	length	(e.g.	64bits,	128bits,	etc…)

E(∙, ∙) D(∙, ∙)
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Block	Ciphers
Fixed	key	and	block	length
◦ DES:	V	 = 	64	YCDZ, #	 = 	56	YCDZ
◦ 3-DES:V	 = 	64	YCDZ, 	#	 = 	168	YCDZ
◦ RC6:	V	 = 	128	YCDZ, #	 = 	128/192/256	YCDZ
◦ AES:V	 = 	128	YCDZ, #	 = 	128/192/256	YCDZ
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Stream	vs Block	Ciphers
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Block	Ciphers
COMPONENTS



Substitution	and	Permutation
In 1949, Shannon introduced the idea of substitution-permutation (S-P) networks which form the
basis of modern block ciphers

S-P	networks	are	based	on	the	two	primitives:
◦ Substitution (S-box)	à Confusion
◦ Permutation (P-box)	à Diffusion

A	good	block	cipher	uses	also:
◦ XOR
◦ Circular	Shift
◦ Swap
◦ Split	and	Combine



Permutation	Boxes
A	P-Box	(permutation	box)		is	like	
◦ The	traditional	transposition	cipher	for	characters
◦ But	it	transposes	bits

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3

1 2 3

1 2 3 4 5

Straight
P-Box

Compression
P-Box

Expansion
P-Box



Permutation	Boxes:	Example
Straight P-Box:	n	(inputs)	x	n	(outputs)
◦ Example	64x64	permutation	table

Compression P-Box:	n	(inputs)	x	m	(outputs)	à% < V
◦ Example	32x24	permutation	table

Expansion P-Box:	n	(inputs)	x	m	(outputs)	à% > V
◦ Example	12x16	permutation	table



Permutation	Boxes:	Example
Straight P-Box:	n	(inputs)	x	n	(outputs)

Compression P-Box:	n	(inputs)	x	m	(outputs)	à% < V

Expansion P-Box:	n	(inputs)	x	m	(outputs)	à% > V

Which	one	is	invertible?
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Permutation	Boxes:	Example
Straight	3x3	P-Box	(permutation	box)
◦ 6	possible	mappings
◦ Same	number	of	inputs	and	outputs

0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1



Substitution	Boxes
An	S-Box	(substitution	box)	is
◦ A	box	that	realizes	a	miniature	substitution	cipher
◦ Is	an	%	/	V substitution	 cipher
◦ Invertible	if	% = V !

00 01 10 11
0 00 10 01 11
1 10 00 11 01

00 01 10 11

0 011 101 111 100

1 000 010 001 110

Leftmost
Rightmost



Substitution	Boxes:	Examples
Invertible	if	same	input	and	output	size
◦ If	the	input	 to	the	left	box	is	001,	the	output	 is	101
◦ The	input	101 in	the	right	table	creates	the	output	001
◦ The	two	tables	are	inverses	of	each	other

00 01 10 11

0 011 101 111 100

1 000 010 001 110

00 01 10 11

0 100 110 101 000

1 011 001 111 010

Encryption	S-Box Decryption	S-Box



Other	components
Circular	Shift
◦ Shift	bits	to	the	left	or	to	the	right

Swap
◦ Particular	case	of	the	shift
◦ Size	of	shift	=	V/2

Split	&	Combine
◦ In	encryption	we	need	to	split	words
◦ In	decryption	we	need	to	re-combine	words



Encrypt	by	iterations
High	level	structure
◦ Define	b rounds
◦ Derive	#+..d keys
◦ Iteratively	apply	round	 functions S(#e, Ye) to	each	block
◦ DES: 16	rounds	à 3-DES:	48	rounds	 (16x3)
◦ AES:	10	rounds

k

#+ #f #d

m

CT

…

…
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Encrypt	by	iterations
8-bit	Plaintext

Round	keys	generator
K



Encrypt	by	iterations
8-bit	Plaintext

Key	Mixer
S-Box	1 S-Box	2 S-Box	3 S-Box	4

P-Box

Middle	Text
Round	keys	generator

K

P+



Encrypt	by	iterations
8-bit	Plaintext

Key	Mixer
S-Box	1 S-Box	2 S-Box	3 S-Box	4

P-Box

Middle	Text

Key	Mixer
S-Box	1 S-Box	2 S-Box	3 S-Box	4

P-Box

8-bit	Ciphertext

Round	keys	generator
K

P+

Pf



Performance
Iterations	(rounds)	drawback
◦ Stream	Ciphers	notably	faster	than	Block	Ciphers
◦ Crypto++	benchmarks	 (http://www.cryptopp.com/benchmarks.html)

Cipher Block Size Key Size Throughput [MB/s]
RC4 - - 126
Salsa20/12 - - 674
Sosemanuk - - 767

DES 64 56 46
3-DES 64 168 17

AES 128 128 148



Block	Ciphers
FEISTEL NETWORK



Motivation	for	Feistel Network
Product	cipher
◦ Sequence	of	two	or	more	simple	ciphers	
◦ Final	result	or	product	 is	cryptographically	 stronger	than	any	of	the	component	ciphers

S-P	network
◦ A	special	form	of	substitution-permutation	 product	cipher
◦ Feistel Network
◦ Non-Feistel Network



Motivation	for	Feistel Network
Feistel ciphers
◦ In	1970’s,	Horst	Feistel (IBM)	proposed	 a	suitable	(and	practical)	structure	for	Shannon’s	 S-P	network
◦ Encryption	and	decryption	use	the	same	structure
◦ Three	types	of	components:
◦ Self-invertible
◦ Invertible
◦ Non-Invertible

Non-Feistel ciphers
◦ Only	invertible	components
◦ A	component	 in	the	encryption	cipher	has	the	corresponding	 component	 in	the	decryption	cipher



Feistel Network
First	sketch	of	the	Feistel design
◦ Any	function	k(P)

Plaintext

+ k(P)

Ciphertext

K

Plaintext

+ k(P)

Ciphertext

K



Feistel Network
Improvement	of	the	Feistel design
◦ Any	function	k(P, Se)

l+

+
k(S+,P) K

S+

lf Sf

lm

+
k(Sn,P) K

Sm

ln Sn



Feistel Network
Improvement	of	the	Feistel design
◦ Any	function	k(P, Se)
◦ Swap	output	of	each	round

l+

+
k(S+,P) K

S+
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lm

+
k(Sn,P) K
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Feistel Network
Block	size	
◦ Increasing	size	improves	security

Key	size	
◦ Increasing	size	improves	security
◦ Makes	exhaustive	key	searching	harder

Number	of	rounds	
◦ Increasing	number	improves	security

Sub-key	generation	
◦ Greater	complexity	can	make	analysis	harder

Round	function	
◦ Greater	complexity	can	make	analysis	harder

Slows	encryption/decryption



Feistel Network
Make	the	network
◦ Use	generic	round	 functions
◦ k+,…, kp: 0,1 r → 0,1 r	

◦ To	make	invertible	 function
◦ s k+,… , kp : 0,1 fr → 0,1 fr

◦ tSeu+ = le⨁keu+(Se)
leu+ = Se 																				
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Feistel Network
Always	invertible
◦ Even	if	ke is	not	invertible

Ri
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inverse

tSeu+ = le⨁keu+(Se)
leu+ = Se																				

inverse
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Feistel Network: Encryption/Decryption
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Feistel Network
Decryption	is	basically	the	same	circuit
◦ Applied	in	the	inverse	order
◦ i.e.	k+,… , kp à kp , … , k+

General	methodology	to	build	ciphers
◦ Arbitrary	atomic	function	(also	not	invertible)
◦ Always	invertible

Design	for	many	block	ciphers
◦ DES
◦ 3-DES
◦ RC5
◦ …Not	AES…



Feistel Network:	two-rounds
Never	use	two-rounds Feistel network
◦ It	is	not	secure

◦ Suppose	ke = s(#e,⋅) is	a	secure	function
◦ Compare	and	exploit	output	 from:
◦ %+ = 0000
◦ %f = 0011
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Feistel Network: two-rounds
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Feistel Network: two-rounds
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Block	Ciphers
DATA	ENCRYPTION	STANDARD



Encryption	Standardization
1960
◦ The	first	commercial	Feistel Cipher	developed	by	IBM	
◦ Lucifer	by	Feistel and	Coppersmith

1972
◦ US	National	Bureau	of	Standards	(NBS)	call	for	proposals

1974-1977
◦ Lucifer	refined,	 renamed	the	Data	Encryption	Algorithm	 (DEA)
◦ Adopted	as	standard	by	NBS
◦ First	official	U.S.	government	cipher	for	commercial	use
◦ Most	widely	used	block	cipher

1997
◦ DES	theoretically	broken

◦ Exhaustive	search
◦ Differential	and	linear	cryptanalysis



DES	Structure
Basic	process	to	encrypt	a	64-bit	data	block
◦ Initial	permutation	 (IP)	which	shuffles	 the	64-bit	input	block
◦ 16	rounds	of	a	complex	key	dependent	 round	 function	
◦ Involving	substitutions	 &	permutations

◦ Final	permutation,	being	 the	inverse	of	IP	

m CT

k1 k2 k
16

IP yz−1

k



DES	Structure
16	sub-keys	are	derived	by	the	64-bit	key	(56+8	parity):
◦ Initial	permutation	of	the	key	(K)	
◦ Selects	56-bits	out	of	the	64-bits	 input,	in	two	28-bit	halves	

◦ 16	stages	to	generate	the	48-bit	sub-keys	
◦ Using	a	left	circular	shift	and	a	permutation	of	the	two	28-bit	halves
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DES:	Feistel Round	Function
Ri

P

48 bit

ki+1⨁
6 bit

S1

4 bit

S2 S3 S4 S5 S6 S7 S8

E

32 bit
48 bit

32 bit



DES	Overview



DES	Decryption
Decrypt	must	“undo”	steps	of	data	computation	
◦ Exploit	Feistel design,	do	encryption	steps	again	
◦ Using	sub-keys	in	reverse	order	(P+Ç …	P+)

Note	that	
◦ IP	complement	final	FP	step	of	encryption	
◦ 1st	round	with	P+Ç undoes	16th	encrypt	round
◦ 16th	round	with	P+ undoes	1st	encrypt	round	
◦ Then	final	FP	undoes	initial	encryption	IP	



DES	Properties
The	avalanche	effect
◦ A	change	of	one	input	bit	or	key	bit	should	result	in	changing	approx half of	output	bits!
◦ Making	attempts	to	guess	the	key	by	using	different	Plaintext	– Ciphertext pairs	should	be	
impossible

◦ DES	exhibits	strong	avalanche

The	completeness
◦ Each	bit	of	the	ciphertext depend	on	many	bits	on	the	plaintext



DES	Security
Among	the	attempted	attacks,	three	are	of	interest:	
◦ Brute-force/Exhaustive	search
◦ Short	cipher	key
◦ Key	complement	weakness

◦ Differential	cryptanalysis
◦ Designers	of	DES	already	knew	about	this	type	of	attack	
◦ Designed	S-boxes	and	16	as	the	number	of	rounds	 to	make	DES	specifically	 resistant	to	this	type	of	attack

◦ Linear	cryptanalysis
◦ S-boxes	are	not	very	resistant	to	linear	cryptanalysis
◦ DES	can	be	broken	using	2mn pairs	of	known	plaintexts



Breaking	DES
Time	to	break	DES
◦ Number	of	keys:	2ÉÇ 	 = 	7.2	/	10+Ç keys
◦ On	the	average	you	need	to	search	through	2ÉÉ keys
◦ In	the	worst	case	you	need	to	search	all	2ÉÇ keys

◦ If	one	encryption/decryption		in	1	clock	cycle	@	500	MHz	
◦ Time	taken	to	check	ONE	key	=	1/(500	/	10Ç)	Z

◦ Time	taken	to	check	2ÉÉ	keys	=	 fÑÑ

É))	Ö	+)Ü
Z = 834	days

Cost	to	break	DES
◦ At	$20	per	chip,	to	break	DES	in	one	day
◦ Need	to	spend	$16,680



Breaking	DES
Key Size 

(bits)
Number of 

Alternative Keys
Time required at 1 

decryption/µs
Time required 

at 106

decryptions/µs
32 232 = 4.3 x 109 231 µs = 35.8 minutes 2.15 ms

56 256 = 7.2 x 1016 255 µs = 1142 years 10.01 hours

128 2128 = 3.4 x 1038 2127 µs = 5.4 x 1024 years 5.4 x 1018 years

168 2168 = 3.7 x 1050 2167 µs = 5.9 x 1036 years 5.9 x 1030 years

26 characters 
(permutation)

26! = 4 x 1026 2 x 1026 µs = 6.4 x 1012

years
6.4 x 106 years



Breaking	DES
Weak	Keys
◦ Symmetry	of	bits	in	the	32	bit	halves	makes	the	key	weak
◦ Roughly	64	weak	keys,	e.g.:
◦ Alternating	ones	+	zeros	(0x0101010101010101)	
◦ Alternating	'F'	+	'E'	(0xFEFEFEFEFEFEFEFE)	
◦ '0xE0E0E0E0F1F1F1F1'	 	or	'0x1F1F1F1F0E0E0E0E'	

◦ A	complement	of	key	will	encrypt	the	complement	of	a	plaintext	into	the	complement	of	the	ciphertext

Number	of	rounds
◦ Six	round	DES	was	broken	very	early	on
◦ Less	than	16	rounds	makes	DES	less	secure



Breaking	DES
Some	weaknesses	in	DES
◦ Weaknesses	in	S-boxes
◦ Weaknesses	in	P-boxes
◦ Weaknesses	in	Key

The	major	criticism	of	DES	regards	its	key	length
◦ We	can	use	double	or	triple	DES	to	increase	the	key	size
◦ 2-DES	(Double)
◦ 3-DES	(Triple)

◦ We	could	then	preserve	 the	existing	software	and	hardware



Double	DES
Apply	two	iterations	of	DES
◦ Using	two	different	keys	#+ and	#f
◦ 2O!K #+,#f,% = O!K(#+,O!K(#f,%))

Known-plaintext	attack	
◦ 1992:	Meet-in-the-middle	attack
◦ Double	DES	improves	this	vulnerability	 slightly	
◦ 2Éá trials,	but	not	tremendously	 to	2++f

m à′ à

!(#f,%) !(#+,-′)



Meet	In	The	Middle
For	given	A and	Q
◦ Search	only	O(2ÉÇ)	pairs	of	keys	P+ and	Pf
◦ At	the	intermediate	message	Q′

◦ Encrypt	M	under	all	2ÉÇ options	 for	P+
◦ Denote	the	results	by	Q′+,Q′f, . . . , Q′d

M à′ à

!(#f,%) !(#+,-′)

Key à′
000	…000 àh′
000	…001 ài′

… …
111	…111 àõ′



Meet	In	The	Middle
For	given	A and	Q
◦ Search	only	O(2ÉÇ)	pairs	of	keys	P+ and	Pf
◦ At	the	intermediate	message	Q′

◦ Decrypt	Q under	all	2ÉÇ options	 for	Pf
◦ Denote	the	results	by	Q′′+,Q′′f , . . . , Q′′d

M à′ à

!(#f,%) !(#+,-′)

Key à′′
000	…000 à′′h
000	…001 à′′i

… …
111	…111 à′′õ

O(#′, -)



Meet	In	The	Middle
At	least	one	match	of	Qe with	two	keys	(#+ and	#f)
◦ If	there	is	only	match	à found	 the	key
◦ If	there	is	more	than	one	à take	another	pair
◦ This	is	repeated	until	a	unique	pair	found

Key à′′
000	…000 à′′h
000	…001 à′′i

… …
111	…111 à′′õ

Key à′
000	…000 àh′
000	…001 ài′

… …
111	…111 àõ′



Triple	DES
DES	Encrypt-Encrypt-Encrypt	Mode:
◦ Three	keys	P+,Pf,Pn (168	bits)
◦ Strength	ú(2++))	 against	Meet-in-the-Middle
◦ Not	compatible	with	regular	DES

M à

!(#n,%) !(#+, -′′)!(#f, -′)



Triple	DES
DES	Encrypt-Decrypt-Encrypt	Mode:
◦ Two	keys	P+ and	Pf(112	bits)
◦ Two	keys	Strength	ú(2++)) against	Meet-in-the-Middle
◦ Compatible	with	regular	DES	when	P+ = Pf

M à

!(#+,%) !(#+, -′′)O(#f, -′)



Double	vs Triple	DES
Double	DES
◦ Meet	in	the	middle	weakness
◦ Time	≈ 2ÉÇ ∗ 2ÉÇ ≈ 2ÉÇ + 2ÉÇ = 2Éá

Triple	DES
◦ Meet	in	the	middle	weakness
◦ But	still	secure

◦ Time	≈ 2ÉÇ ∗ 2ÉÇ = 	2++f (…	not	2+Çü)

Why	E-D-E?
◦ Initial	and	final	permutations	would	cancel	each	other	out	with	EEE	(minor	 advantage	to	EDE)
◦ EDE	compatible	with	single	DES	if	same	keys.
◦ Only	2	different	Keys	needed	with	E-D-E



Block	Ciphers
ADVANCED	ENCRYPTION	STANDARD



The	AES	Standardization
1997
◦ NIST	publishes	request	for	proposal	for	DES	successor
◦ Three	selection	criteria
◦ Security,	Cost	and	Implementation

1998-1999
◦ 15	submissions	– 5	finalists
◦ Rijndael:	86	positive,	10	negative
◦ Serpent:	59	positive,	7	negative
◦ Twofish:	31	positive,	21	negative
◦ RC6:	23	positive,	37	negative
◦ MARS:	13	positive,	84	negative

2001
◦ NIST	chooses	Rijndael as	AES	(designed	in	Belgium)



AES	Overview
AES	is	a	non-Feistel cipher	
◦ Encrypts/Decrypts	a	data	block	of	128	bits
◦ Uses	10,	12,	or	14	rounds
◦ Key	size	of	128,	192,	or	256	bits
◦ Round	sub-keys	are	always	128	bits
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Data	Units	in	AES



State
Block-to-state	and	state-to-block	transformation



Round’s	structure



Substitution	&	Permutation



Mixing
Inter-byte	transformation	
◦ Changes	the	bits	inside	a	byte
◦ Based	on	the	bits	inside	the	neighboring	 bytes
◦ Mix	bytes	to	provide	diffusion at	the	bit	level



Key	Adding
AddRoundKeyproceeds	one	column	at	a	time
◦ Adds	a	round	key	word	with	each	state	column	matrix
◦ The	operation	 is	a	matrix	addition



AES	Security
AES	was	designed	after	DES
◦ AES	can	be	easily	 implemented	

◦ Cheap	processors	and	minimum	amount	of	memory
◦ Known	attacks	on	DES	were	already	 tested	on	AES

Brute-Force	Attack
◦ AES	is	definitely	more	secure	 than	DES	
◦ The	key	is	larger

Statistical	Attacks
◦ Many	tests	failed	to	do	statistical	analysis	of	the	ciphertext

Differential	and	Linear	Attacks
◦ There	are	no	differential	and	linear	 attacks	on	AES	as	yet



Block	Ciphers
MODES	OF	OPERATIONS



Encryption	Modes	Motivation
What	if	the	message	size	shorter	or	larger	than	the	block	size?
◦ Say,	message	Size	=	224-bit
◦ Block	Cipher	Supported	 	=	64-bit	DES
◦ Block	Cipher	Supported	 	=	128-bit	AES

◦ Adapt	cryptographic	algorithm	to	applications					
◦ Increase	the	strength	of	a	cryptographic	algorithm
◦ It	is	necessary	to	divide	bigger	plaintext	into	fixed	sized	blocks	so	that	cipher	can	work	on	 it	(i.e.DES-
64bit)



Conventional	Modes	of	Operations
Electronic	Codebook	Mode	(ECB)

Cipher	Block	Chaining	Mode	(CBC)	

Counter	Mode	(CTR)

Cipher	Feedback	Mode	(CFB)

Output	Feedback	Mode	(OFB)



Electronic	CodeBook
Message	is	broken	into	independent	blocks	
◦ Each	block	is	encrypted	
◦ each	block	is	a	value	which	is	substituted
◦ Like	a	codebook,	 hence	name	

◦ Each	block	is	encoded	independently	 of	the	other	blocks	
◦ Uses:	
◦ Secure	transmission	 of	single	values



Electronic	CodeBook:	Limitations
Message	repetitions	may	show	in	ciphertext
◦ If	aligned	with	message	block	
◦ Particularly	with	data	such	graphics	
◦ With	messages	that	change	very	little
◦ Become	a	code-book	 analysis	 problem	

Weakness	due	to	encrypted	blocks	independent	

Main	use	is	sending	a	few	blocks	of	data



Electronic	CodeBook:	Limitations
Does	not	hide	data	patterns
◦ Unsuitable	for	long	messages
◦ Wiki	example:	pixel	map	using	ECB

Susceptible	to	replay	attacks
◦ Example:	a	wired	transfer	transaction	can	be	replayed	by	resending	 the	original	message

ECB



Electronic	CodeBook:	Limitations
Does	not	hide	data	patterns
◦ Unsuitable	for	long	messages
◦ Wiki	example:	pixel	map	using	ECB

Susceptible	to	replay	attacks
◦ Example:	a	wired	transfer	transaction	can	be	replayed	by	resending	 the	original	message

ECB Other



ECB:	Semantic	Security
Given	algorithm	A
◦ That	compares	ciphertexts

◦ A:	if	-+ = -f output	0;	if	-+ ≠ -f output	1
◦ 9:; 9, !QL = 1
◦ Adversary	distinguishes	 between	%) and	%+

m0	= Hello	World	
m1		= Hello	 Hello

- ⟵ !(#,FG)

Challenger Adversary

A

7 = {0,1}



Cipher	Block	Chaining
Message	is	broken	into	blocks	
◦ Linked	together	 in	encryption	operation	
◦ Each	previous	cipher	blocks	is	chained	with	current	plaintext	block,	hence	name	
◦ Use	Initial	Vector	(IV)	to	start	process	
◦ Qe 	=	!§(>e 	•úS	Qe¶+)
◦ Q¶+ 	= 	ß®	

◦ Uses:	
◦ Bulk	data	encryption
◦ Authentication



CBC	Encryption/Decryption



CBC:	Advantages	and	Limitations
A	ciphertext block	depends	on	all	blocks	before	it
◦ Any	change	to	a	block	affects	all	following	 blocks

Need	Initialization	Vector	(IV)	
◦ Must	be	known	to	sender	&	receiver	
◦ If	sent	in	clear,	attacker	can	change	bits	of	 first	block	and	change	IV	to	compensate	
◦ Hence	IV	must	either	be
◦ A	fixed	value	
◦ Must	be	sent	encrypted	in	ECB	mode	before	rest	of	message



Stream	Modes
Block	modes	encrypt	entire	block
◦ May	need	to	operate	on	smaller	units

Real	time	data?
◦ Convert	block	cipher	into		stream	cipher
◦ Cipher	 Feedback	(CFB)	mode
◦ Output	Feedback	(OFB)	mode
◦ Counter	(CTR)	mode

Use	block	cipher	as	pseudo-random	generator



Counter	Mode
A	“new”	mode,	though	proposed	early	on
◦ Similar	to	OFB	but	encrypts	counter	value	
◦ Rather	than	any	feedback	value

◦ Different	key	&	counter	value	for	every	plaintext	block
◦ Never	reused!!

◦ úe 	= 	 !§(C)
◦ Qe 	 = 	>e	•úS	úe	

Uses:	
◦ High-speed	network	encryptions



CTR	Structure
Deterministic	Counter	Mode
◦ Chunk	the	plaintext
◦ Encrypt	a	counter
◦ Encrypt	as	a	stream	cipher

◦ Secure	if	function	s() is	secure!



CTR:	Advantages	and	Limitations
Efficiency
◦ Can	do	parallel	encryptions	 in	h/w	or	s/w
◦ Can	pre-process	in	advance	of	need
◦ Good	 for	bursty high	speed	links

Random	access	to	encrypted	data	blocks

Provable	security	(good	as	other	modes)

But	must	ensure	never	reuse	key/counter	values
◦ Otherwise	could	break


