
Cryptography
INTRODUCTION

Why	study	cryptography?
Secure communication:
◦ Web
◦ Wireless

Encrypting files:
◦ File System
◦ Archives

Content protection:
◦ CD, DVD, Blu-ray

User authentication:
◦ Digital Identity, Login

Example:	Secure	Web	Traffic

No eavesdropping
No tampering

Eavesdropping
Tampering

Example:	Secure	Wireless	Traffic

Eavesdropping
Tampering

No eavesdropping
No tampering

Cryptography	Actors

Public Channel
Alice

Bob

Eve

Cryptography	Actors:	Secure	Channel

Alice
Bob

Even	Superman	can’t	
violate	it!

What	can	cryptography	do?
Cryptography is an incredibly powerful tool
◦ Fundamental building block for security

Adding	cryptography	makes	things	secure?
◦ Not	True!!!

NOT	the	solution	 to	all	security	problems
◦ Buffer	overflow,	Social	Engineering,	Malware

NOT	Something	you	should	try	to	invent	yourself
◦ Many examples of broken ad-hoc designs

◦ Reliable	unless	implemented	and	used	properly

Cryptography
WHAT	CRYPTOGRAPHY	OFFERS?

Security	Goals:	Confidentiality
I	don’t	want	others	to	see	my	emails	or	chats
◦ Get	my	social-security	number,	 credit-card	number	or	medical	records
◦ Know	which	web	sites	I	visit,	what	I	buy,	where	I	travel
◦ Know	my	salary,	how	I	vote,	what	movies	I	like,	whether	I	sing	in	the	shower

RealWorld Examples
◦ Coca-Cola does not want its formula revealed
◦ Corporations want to protect their technology
◦ Governments want their plans kept secret
◦ Political dissidents want their identities to be secret
◦ …

Security	Goals:	Confidentiality
Prevents	unauthorized	from	accessing	information
◦ “Can	unauthorized	understand	messages?”
◦ Encryption	removes	meanings	from	information

Security	Goals:	Integrity
I	don’t	want	the	emails	or	chats	I	send	or	receive	to	be	modified	or	faked	

I	don’t	want	my	allergy	information	to	be	erased	from	my	medical	record.	

I	don’t	want	my	accounts	to	be	broken	into.	

I	don’t	want	the	data	I	communicate	to	my	bank	to	be	modified.	

Servers	don’t	want	to	hacked	into.	Companies	want	to	control	access	to	their	databases.	

Security	Goals:	Integrity
Data	cannot	be	modified	without	detection
◦ “Is the received message the original sent?”
◦ Hash	functions	make	it	extremely	difficult	to	change	information

A B C D

X Y Z W

Security	Goals:	Authentication
I	want	to	be	sure	that	entities	I	interact	with	are	who	they	claim	to	be
◦ whether	it	be	my	friend	Alice
◦ my	doctor	
◦ google

Security	Goals:	Authentication
◦ A	message	can	be	created	only	by	a	particular	party
◦ “Am I really talking to who I expect?”
◦ Key	only	know	by	allowed parties

Whois
Bob?

Mix	everything:	Secure	Channel

Secure	Channel

𝑀"

𝑀#
$

𝑀#

𝑀"
$

Confidentiality: Adversary does not learn anything about 𝑀",𝑀#

Integrity: 𝑀"
$ 	 =	𝑀" and 𝑀#

$ 	= 	𝑀#

Mix	everything:	Secure	Channel

Secure	Channel

𝑀"

𝑀#
$

𝑀#

𝑀"
$

Confidentiality: Adversary does not learn anything about 𝑀",𝑀#

Integrity: 𝑀"
$ 	 =	𝑀" and 𝑀#

$ 	= 	𝑀#

Authentication:	Alice	is	really	̀ `Alice’’	and	Bob	is	really	̀ `Bob’’

Many	crypto	tools…
Secure key establishment

Secure communication

Digital signatures

Anonymous communication
◦ Anonymous payments
◦ Anonymous e-voting
◦ Private queries

Secure computation

Much much more…

Classical	Ciphers
SUBSTITUTION	CIPHERS

Caesar	Cipher

The	key	k is	the	offset	that	shifts	the	alphabet
◦ Encrypt	using
◦ 𝐶) = 𝑀) +𝐾 𝑚𝑜𝑑26

◦ Decrypt	using
◦ 𝑀) = 𝐶) −𝐾 𝑚𝑜𝑑26

A B C D E F G H I L M N O P Q R S T U V

D E F G H I L M N O P Q R S T U V A B C

T H I S I S T H E M E S S A G E

Caesar	Cipher

The	key	k is	the	offset	that	shifts	the	alphabet
◦ Encrypt	using
◦ 𝐶) = 𝑀) +𝐾 𝑚𝑜𝑑26

◦ Decrypt	using
◦ 𝑀) = 𝐶) −𝐾 𝑚𝑜𝑑26

A B C D E F G H I L M N O P Q R S T U V

D E F G H I L M N O P Q R S T U V A B C

T H I S I S T H E M E S S A G E

A

Caesar	Cipher

The	key	k is	the	offset	that	shifts	the	alphabet
◦ Encrypt	using
◦ 𝐶) = 𝑀) +𝐾 𝑚𝑜𝑑26

◦ Decrypt	using
◦ 𝑀) = 𝐶) −𝐾 𝑚𝑜𝑑26

A B C D E F G H I L M N O P Q R S T U V

D E F G H I L M N O P Q R S T U V A B C

T H I S I S T H E M E S S A G E

A M

Caesar	Cipher

The	key	k is	the	offset	that	shifts	the	alphabet
◦ Encrypt	using
◦ 𝐶) = 𝑀) +𝐾 𝑚𝑜𝑑26

◦ Decrypt	using
◦ 𝑀) = 𝐶) −𝐾 𝑚𝑜𝑑26

A B C D E F G H I L M N O P Q R S T U V

D E F G H I L M N O P Q R S T U V A B C

T H I S I S T H E M E S S A G E

A M N

Caesar	Cipher

The	key	k is	the	offset	that	shifts	the	alphabet	(Caesar	used	K=3)
◦ Encrypt	using
◦ 𝐶) = 𝑀) +𝐾 𝑚𝑜𝑑26

◦ Decrypt	using
◦ 𝑀) = 𝐶) −𝐾 𝑚𝑜𝑑26

A B C D E F G H I L M N O P Q R S T U V

D E F G H I L M N O P Q R S T U V A B C

T H I S I S T H E M E S S A G E

A M N V N V A M H P H V V D L H

The	key	𝑘) is	the	letter	in	the	scrambled	alphabet
◦ Encrypt	using
◦ 𝐶) = 𝑀) ← 𝐾)

◦ Decrypt	using
◦ 𝑀) = 𝐶) ← 𝒜)

Substitution	Cipher
A B C D E F G H I L M N O P Q R S T U V

U C H G F P L M Q V I O R A T D N S B E

T H I S I S T H E M E S S A G E

S M Q N Q N S M F I F N N U L F

Cryptanalysis	of	Monoalphabetic
Easily	breakable	by	knowing	the	cipher	algorithm
◦ Worked	well	back	in	the	day
◦ High	illiteracy	rate
◦ Lack	of	algorithms	knowledge

How	to	break	it?
◦ Brute	force
◦ Try	every	possible	key	(Always	an	option)
◦ For	a	26-letter	alphabet,	only	26	possible	values	for	k
◦ That’s	so	simple!

◦ Frequency	analysis

Frequency	Analysis
In	every	language
◦ Symbols	occur	with	different	probabilities

Frequency	analysis	
◦ Looks	at	how	often	each	is	seen	in	a	sample
◦ Match	frequency	 in	ciphertext to	frequency	 in	plaintext
◦ Gives	a	short	 list	of	possible	mappings

Italian English

E 11,79% E 12,31%

A 11,74% A 9,59%

I 11,28% I 8,05%

O 9,83% O 7,94%

N 6,88% N 7,19%

Polyalphabetic	Ciphers
Monoalphabetic cipher	
◦ Applies	 the	same	key	to	every	symbol
◦ So	simple	to	break!

Polyalphabetic	cipher	
◦ Switches	between	a	set	of	keys
◦ Harder	to	break…

We’ll	look	at	the	Vigenère Cipher
◦ Symbols	are	changed	exact	same	way	as	Caesar’s	cipher
◦ Difference	is	that	there	are	multiple	key	symbols

Vigenère Cipher

Polyalphabetic	Cipher
◦ Plaintext	from	column
◦ Key	from	row

◦ Encrypt	using
◦ 𝐶) = 𝑀) + 𝐾)	567	89:(<)

◦ Decrypt	using
◦ 𝑀) = 𝐶) − 𝐾)	567	89:(<)

N E T S E C C L A S S

L E A R N

Vigenère Cipher

Polyalphabetic	Cipher
◦ Plaintext	from	column
◦ Key	from	row

◦ Encrypt	using
◦ 𝐶) = 𝑀) + 𝐾)	567	89:(<)

◦ Decrypt	using
◦ 𝑀) = 𝐶) − 𝐾)	567	89:(<)

N E T S E C C L A S S

L E A R N L E A R N L

Vigenère Cipher

Polyalphabetic	Cipher
◦ Plaintext	from	column
◦ Key	from	row

◦ Encrypt	using
◦ 𝐶) = 𝑀) + 𝐾)	567	89:(<)

◦ Decrypt	using
◦ 𝑀) = 𝐶) − 𝐾)	567	89:(<)

N E T S E C C L A S S

L E A R N L E A R N L

Y

Vigenère Cipher

Polyalphabetic	Cipher
◦ Plaintext	from	column
◦ Key	from	row

◦ Encrypt	using
◦ 𝐶) = 𝑀) + 𝐾)	567	89:(<)

◦ Decrypt	using
◦ 𝑀) = 𝐶) − 𝐾)	567	89:(<)

N E T S E C C L A S S

L E A R N L E A R N L

Y I

Vigenère Cipher

Polyalphabetic	Cipher
◦ Plaintext	from	column
◦ Key	from	row

◦ Encrypt	using
◦ 𝐶) = 𝑀) + 𝐾)	567	89:(<)

◦ Decrypt	using
◦ 𝑀) = 𝐶) − 𝐾)	567	89:(<)

N E T S E C C L A S S

L E A R N L E A R N L

Y I T

Vigenère Cipher

Polyalphabetic	Cipher
◦ Plaintext	from	column
◦ Key	from	row

◦ Encrypt	using
◦ 𝐶) = 𝑀) + 𝐾)	567	89:(<)

◦ Decrypt	using
◦ 𝑀) = 𝐶) − 𝐾)	567	89:(<)

N E T S E C C L A S S

L E A R N L E A R N L

Y I T J R N G L R F D

Vigenère Cipher
Can	condense	symbols	into	a	simple	expression
◦ 𝐶[𝑖] = P[i]+K[i	mod	len(k)]
◦ The	second	part	selects	the	correct	key	symbol	 to	use
◦ If	you	do	this,	watch	out	for	the	spaces
◦ If	they	aren’t	in	the	alphabet,	they	should	 be	ignored

Spaces	may	preserve	plaintext	word	length
◦ or	may	occur	at	fixed	intervals	to	obscure	word	length

Cryptanalysis	of	Vigenère Cipher
Figure	out	the	key	length,	n
◦ Look	for	patterns
◦ Common	words	are	likely	to	be	encrypted	multiple	times	if	the	text	is	long	enough
◦ “the”	is	very	common	in	English
◦ If	there	are	at	least	n	occurrences	of	“the”	in	the	plaintext,	we	can	expect	at	least	2	to	have	identical	ciphertext

◦ When	you	find	two	words	of	ciphertext that	you	believe	to	encrypt	the	same	ciphertext
◦ Find	the	difference	in	position,	d
◦ Assume	that	𝑛|𝑑 (n	divides	d)
◦ Repeat	and	narrow	in	on	n by	looking	for	common	factors

Cryptanalysis	of	Vigenère Cipher	

1. Spaces	occur	at	fixed	intervals

2. Look	for	any	repeated	groupings

KKALC LGQLC CREFC KVMPW BSURR ZUZMH PWZJO ZFHIF
FBMAV VFQAS COKSI IGOIB VTDSA RBOMS EHSVI UUQFF
VOWXC ESIQI KWZCK YSDIQ ZJUPP CCAHA RYQWQ ZJUPV
RBPWI EQXIO ETDSA WCDXV KVQJO KOXPC ZBEST KVQWS
KKAJC VGMTO ZFAJG KODGF FGEHZ FJQVG KOWIH YSUVZ

Cryptanalysis	of	Vigenère Cipher	

1. Spaces	occur	at	fixed	intervals

2. Look	for	any	repeated	groupings
◦ KKA	(0,160)

KKALC LGQLC CREFC KVMPW BSURR ZUZMH PWZJO ZFHIF
FBMAV VFQAS COKSI IGOIB VTDSA RBOMS EHSVI UUQFF
VOWXC ESIQI KWZCK YSDIQ ZJUPP CCAHA RYQWQ ZJUPV
RBPWI EQXIO ETDSA WCDXV KVQJO KOXPC ZBEST KVQWS
KKAJC VGMTO ZFAJG KODGF FGEHZ FJQVG KOWIH YSUVZ

Distance:	160

Cryptanalysis	of	Vigenère Cipher	

1. Spaces	occur	at	fixed	intervals
2. Look	for	any	repeated	groupings
◦ KKA	(0,160)
◦ OZF	(34,169)
◦ TDSA	(61,131)
◦ QZJUP	(99,114)
◦ KVQ	(140,155)
◦ GKO	(174,189)

KKALC LGQLC CREFC KVMPW BSURR ZUZMH PWZJO ZFHIF
FBMAV VFQAS COKSI IGOIB VTDSA RBOMS EHSVI UUQFF
VOWXC ESIQI KWZCK YSDIQ ZJUPP CCAHA RYQWQ ZJUPV
RBPWI EQXIO ETDSA WCDXV KVQJO KOXPC ZBEST KVQWS
KKAJC VGMTO ZFAJG KODGF FGEHZ FJQVG KOWIH YSUVZ

Cryptanalysis	of	Vigenère Cipher	
1. Find	the	differences	between	pairs	and	factor
◦ 160	– 	0	 = 	160	 = 	25	 ∗ 	5
◦ 169	– 	34	 = 	33	 ∗ 	5
◦ 131	– 	61	 = 	70	 = 	2	 ∗ 	5	 ∗ 	7
◦ 114	– 	99	 = 	155	– 	140	 = 	189	– 	174	 = 	15	 = 	3	 ∗ 	5

2. Identify	common	factors
◦ They	all	have	5	as	a	factor
◦ Since	5	is	a	prime	and	the	key	has	an	integer	length

◦ We	know	𝑛 = 5
◦ If	the	only	factor	is	composite,	 it	may	be	the	key	length	or	a	multiple	of	the	key	length

3. Split	the	ciphertext by	key	character

4. Now	perform	frequency	analysis!

Kerckhoffs’	Principle
“A	cryptosystem	should	be	secure	even	if	the	attacker	knows	all	details	about	the	system,	with	
the	exception	of	the	secret	key.	In	particular,	the	system	should	be	secure	when	the	attacker	

knows	the	encryption	and	decryption	algorithms.”

Encryption	and	Decryption	algorithm
◦ Can	be	public?

Security	only	depends	on	the	secrecy	of	the	key?

Security	by	obscurity	cannot	work!

Symmetric	
Cryptography
VERNAM CIPHER	(ONE-TIME	PAD)

Symmetric	Cipher

A	symmetric	cipher	is	defined	as
◦ 𝐸(⋅,⋅)→ Encryption	Algorithm
◦ 𝐷(⋅,⋅)→ Encryption	Algorithm
◦ 𝐾	 →	Secret	Key

We	have	two	types	of	messages
◦ 𝑀 → Plaintext	(original	message)
◦ 𝐶𝑇 → Ciphertext (encrypted	message)

Common	key	and	common	cipher!

E(m, k) D(CT, k)

m CT m

k k

Symmetric	Cipher

A	cipher defined over	 K, M,𝐸,𝐷 with
◦ Pair	of		“efficient”	algorithms	 (𝐸, 𝐷)
◦ 𝑬: 	𝑲	×	𝑴	 −> 	𝑪𝑻
◦ 𝑫: 	𝑲	×	𝑪	 −> 	𝑴
◦ 𝑫[𝑬(𝒌,𝒎)	, 𝒌] 	= 	𝒎

E(m, k) D(CT, k)

m CT m

k k

Use	cases
Single-use	key
◦ Key	is	only	used	to	encrypt	once
◦ e.g.	Encrypted	message:	new	key	generated	for	each
◦ e.g.	Encrypted	archive:	different	password	 for	each

◦ Only	need	key-agreement/transfer

Multi-use	key
◦ Key	used	to	encrypt	many	times	
◦ e.g.	Encrypted	files:	same	key	used	to	encrypt	many
◦ e.g.	Encrypted	communication:	same	key	to	encrypt	messages

◦ Needs	more	tricky	functions

Symmetric	ciphers
Symmetric	algorithms	fall	into	two	categories
◦ Block	ciphers
◦ Stream	ciphers

Used	for	different	purposes

Both	must	provide	confusion	and	diffusion
◦ Confusion:	 relationship	between	key	and	ciphertext is	obscured
◦ Diffusion:	 the	influence	of	one	plaintext	symbol	is	spread	over	many	ciphertext symbols	with	the	goal	of	
hiding	statistical	properties	of	the	plaintext
◦ Adversary	must	do	more	work	to	find	statistical	properties

Confusion/Diffusion	 in	Caesar	Cipher
Caesar	cipher	provides	confusion	and	diffusion?

Confusion/Diffusion	 in	Caesar	Cipher
Caesar	cipher	provides	confusion	and	diffusion?

Confusion	à YES
◦ Yes,	no	relationship	between	key	and	ciphertext

Diffusion	à NO
◦ Changing	one	symbol	 in	the	plaintext	has	a	very	predictable	result
◦ Only	changes	one	symbol	in	the	output	

XOR	Operator
The	XOR	between	x, y ∈ {0,1}:
◦ Is	the	bit-wise	add	module	2:	 𝑥 + 𝑦 𝑚𝑜𝑑2

Has	interesting	properties	for	crypto
◦ Given	𝑥 r.v.	in	 0,1 :

◦ Given	𝑦 uniform r.v.	in	 0,1 :

◦ The	r.v.	𝑧 = 𝑥⨁𝑦 is	uniform in	 0,1 :

x y x⨁ y

0 0 0

0 1 1

1 0 1

1 1 0

x y

0 𝑃x 1/2
1 𝑃z 1/2

x y x⨁ y

0 0 𝑃x/2
0 1 𝑃x/2
1 0 𝑃z/2
1 1 𝑃z/2

Vernam Cipher	/	One	Time	Pad
First	example	of	secure cipher
◦ Given	a	message	𝑀	 = 0,1 :

◦ Given	a	secret key	𝐾	 = 0,1 :

We	define	the	symmetric	cipher
◦ 𝐶𝑇	 ≔ 	𝐸(𝐾,𝑀) = 	𝐾	 ⊕ 	𝑀
◦ 𝐷(𝐾, 𝐶𝑇) 	= 	𝐾	 ⊕ 	𝐶𝑇
◦ 𝐷(𝐾, 𝐶𝑇) 	= 	𝐷[𝑘, 𝐸 𝐾,𝑀]	 = 	𝐾⨁(𝐾⨁𝑀) 	= 	𝑀

M 0 1 0 0 1 0 1 1 1 0
K 1 1 1 0 1 0 1 0 1 0
CT 1 0 1 0 0 0 0 1 0 0

⊕

Vernam Cipher	/	One	Time	Pad
One-Time Pad is so efficient
◦ Very fast encryption/decryption

What about length of the secret key?

What about randomness of the secret key?

One-Time Pad is a secure scheme?

Perfect	Secrecy
A	cipher	(𝐾,𝑀, 𝐶𝑇) has	perfect	secrecy if
◦ Given	plaintexts	𝑚x,𝑚z 	∈ 	𝑀	 →	 |𝑚x| 	= 	 |𝑚z|
◦ Given	ciphertext 𝑐	 ∈ 	𝐶𝑇
◦ Given	the	secret	key	k

~
←𝐾

Knowing c cannot reveal nothing about plaintext
Knowing c can’t tell anything of 𝑚x,𝑚z

No attacks on CT

Perfect secrecy requires: |𝒦| ≥ 	|ℳ|

𝐏 𝑬 𝒌,𝒎𝟎 = 	𝒄 = 	𝑷{𝑬(𝒌,𝒎𝟏) 	= 	𝒄}

One-Time	Pad:	Perfect	Secrecy
The	only cryptosystem	that	provides	perfect	secrecy!
◦ Knowing	 the	ciphertext doesn’t	give	you	any	additional	 insight	 into	the	value	of	 the	plaintext

It	is	also	unconditionally secure
◦ Cannot	be	broken	even	with	infinite computational	resources

An	attacker	with	infinite	resources	can	break	a	10,000-bit	key	cipher	in	one	time-step
◦ Have	210,000 computers	each	try	a	key
◦ That’s	more	computers	than	atoms	in	the	universe!
◦ System	is	computationally secure
◦ Adversary	is	computationally	 bounded

The	bad	news…
The	key	bits	need	to	be	truly	random
◦ Does	your	computer	have	true	random	number	generator?	

The	sender	and	receiver	must	have	the	same	key	stream
◦ How	do	you	communicate	the	key	stream	securely?

A	bit	of	the	key	stream	can	only	be	used	once
◦ Key	needs	to	be	as	long	as	the	message
◦ That’s	a	lot	of	bits	over	time

◦ A	lot	to	have	to	send	securely

NOT	practical	for	the	vast	majority	of	applications

The	good	news…
We	can	approximate	a	OTP	with	a	stream	cipher

Main	idea:
◦ Use	a	shorter	key	to	generate	a	key	stream	in	a	pseudo-random	 fashion
◦ More	practical
◦ Can	achieve	computational	security
◦ Unfortunately,	 does	not	achieve	perfect	secrecy

Symmetric	
Cryptography
STREAM	CIPHERS

Pseudo	Random	Generator
We	need	many	unpredictable	random	numbers
◦ Very	difficoult to	produce	random
◦ Most	behaviour are	predictable
◦ Often	depends	on	implementation

Pseudo	Random	Generator
Try	to	approximate	randomgenerators
◦ Takes	a	truly random	key	(seed)
◦ Expand	the	key	into	a	“random-looking”	sequence

𝟎,𝟏 𝒔 	→ 𝟎,𝟏 𝒏	, 	𝒏	 ≫ 	𝒔

Expansion
◦ Seed	128 − 𝑏𝑖𝑡	 → Key	10� − 𝑏𝑖𝑡

Efficiently	computable	using	deterministic algorithm!

Famous	PRG	fails:	MIT	Magic	Cookie

𝑘𝑒𝑦	 = 	𝑟𝑎𝑛𝑑𝑜𝑚()%256

Only	256	possible	values	of	key:	2�𝑏𝑟𝑢𝑡𝑒𝑓𝑜𝑟𝑐𝑒

Famous	PRG	fails:	Kerberos	

𝑠𝑟𝑎𝑛𝑑 𝒕𝒊𝒎𝒆𝒎𝒔⨁𝑡𝑖𝑚𝑒�⨁𝑝𝑖𝑑	⨁𝑐𝑜𝑢𝑛𝑡𝑒𝑟⨁𝑖𝑑
𝑘𝑒𝑦	 = 	𝑟𝑎𝑛𝑑𝑜𝑚()

Reduced	entropy	32𝑏𝑖𝑡	 → 20𝑏𝑖𝑡:	2�x𝑏𝑟𝑢𝑡𝑒𝑓𝑜𝑟𝑐𝑒

The	most	common	random…
Random	by	Linear	Generation	Algorithm
◦ Take	a	module	𝑝 ← 2�z
◦ Take	two	constant	values	𝑎, 𝑏
◦ Generate	values	using	 linear	combination

𝑥)�z = 𝑎 ∗ 𝑥) + 𝑏 𝑚𝑜𝑑𝑝

◦ 32-bit	of	output’s	entropy
◦ Correlation	between	values!
◦ Don’t	use	for	crypto	purposes!!!

◦ rand()	 function	 in	Windows	– an	LCG	with
◦ a	=	214013,	b	=	2531011,	p=	232

Is	it	unpredictable?
Consider	a	Linear	PRG
◦ Choose	𝐾(∼ 	𝟐𝟑𝟎), 	𝑎, 𝑏, 𝑐, 𝑑
◦ Initialize	{𝒙𝟎, 𝒚𝟎}	with	random	values	in	{𝟎, 𝑲}

	𝑃𝑅𝐺: 𝐾 = 𝑥:⊕	𝑦:

◦ 𝑥:�z 	= 	𝑎	 ∗ 	𝑥: 	+ 	𝑏	𝑚𝑜𝑑𝐾
◦ 𝑦:�z 	= 𝑐	 ∗	𝑦: 	+ 𝑑	𝑚𝑜𝑑𝐾

Can	you	recover	𝑃𝑅𝐺)�z given	𝑃𝑅𝐺z…)?

Random	in	practice
Pseudo-random	generators	in	practice
◦ Unix	read	from	/dev/random	and	/dev/urandom (cat	…)
◦ Maintains	 an	“entropy	pool”	and	a	number	of	bits
◦ Hashes	pool	and	provides	bits	as	output
◦ Needs	to	continuosly add	entropy	to	internal	state

◦ Needs	entropy	sources
◦ Keyboard,	mouse,	 etc…	

Entropy
Source

“Looks	random”
What	does	it	mean?

Non-cryptographic	applications:
◦ Should	 pass	some	statistical	tests

Cryptography:
◦ Should	 pass	all	polynomial-time	 tests

From	OTP	to	Stream	Cipher
Main	Idea
◦ Replace	random key	with	pseudo-random

Replace	key	with	PRG
◦ 𝐶𝑇	 ≔ 	𝐸(𝐾,𝑀) 	 = 	𝑃𝑅𝐺(𝐾)	⊕ 	𝑀
◦ 𝐷(𝐾, 𝐶𝑇) 	= 	𝑃𝑅𝐺(𝐾) 	⊕ 	𝐶𝑇

E(m, k’) D(CT, k’)

m CT m

k
PRG(k)

k
PRG(k)

Are	Stream	Ciphers	secure?
Cannot	have	perfect	secrecy
◦ Need	to	define	differently	 the	security	notion

◦ Key is not truly random	k
~
←𝐾

Security	depends	on	the	specific	PRG
◦ MUST	be	unpredictable

𝑃{𝑃𝑅𝐺z..) 𝑘 = 	𝑃𝑅𝐺)�z 𝑘 } 	≃ 1/2

Improve	Stream		Ciphers
Needs	to	use	a	freshness	key
◦ Concatenate	key and	a	nonce

𝑃𝑅𝐺(𝑘||𝑟): 0,1 � 	×	𝑅	 −> 0, 1 :

◦ The	pair	<k,r> MUST	be	used	only	once!

𝐶𝑇x 	≔ 	𝐸(𝑘,𝑚x	, 𝑟x)	 = 	𝑚x 	⊕ 	𝑃𝑅𝐺(𝑘||𝑟x)
𝐶𝑇z 	≔ 	𝐸(𝑘, 𝑚z	, 𝑟z)	 = 	𝑚z 	⊕ 	𝑃𝑅𝐺(𝑘||𝑟z)

Popular	Historical	Stream	Ciphers
Based	on	the	linear	feedback	shift	registers:

◦ A5/1	and	A5/2	(used	 in	GSM)

◦ Content	Scramble	System	(CSS)	encryption	 (used	 in	DVD)

Other:
◦ RC4

completely	broken

completely	broken

very	popular,	 but	has	some	security	weaknesses

Symmetric	
Cryptography
HOW	TO	NOT	USE	ONE-TIME	PAD

Two-Time	Pad
Don’t	change	the	OTP	key

𝐶𝑇x 	 = 	𝑚x 	⊕ 	𝑘
𝐶𝑇z 	 = 	𝑚z 	⊕ 	𝑘

…
𝐶𝑇: 	 = 	𝑚: 	⊕ 	𝑘

Attacker	exploit	it	easily
𝐶𝑇x ⊕ 𝐶𝑇z = 	𝑚x 	⊕ 	𝑘 ⊕𝑚z ⊕ 	𝑘 = 𝑚x ⊕𝑚z
𝐶𝑇x ⊕ 𝐶𝑇) = 	𝑚x 	⊕ 	𝑘 ⊕𝑚) ⊕ 	𝑘 = 𝑚x ⊕𝑚)

…
◦ Enough	redundancy	of	ASCII	and	common	 languages
◦ Simplified	 cryptanalysis	

Message	Integrity
One-Time	Pad	CT	can	be	modified
◦ Modifications	are	undetectable
◦ Modifications	have	predictable impact	on	PT
◦ Not	limited	to	Denial	Of	Service

From: Bob CT

“…..“ Eve ⊕ “…..“ Bob

From: Eve

Message	Integrity
One-Time	Pad	CT	can	be	modified
◦ Modifications	are	undetectable
◦ Modifications	have	predictable impact	on	PT
◦ Not	limited	to	Denial	Of	Service

42 6F 62
CT

45 76 65 ⊕ 42 6F 62

45 76 65

07 19 07

Use	Case:	MS-PPTP
PPTP	(Point	to	Point	Tunneling	Protocol)	
◦ Allows	to	create	virtual	private	networks	using	 tunneling
◦ Implemented	 in	Windows	98	and	Windows	NT
◦ Cryptographically	broken	by	Microsoft	 since	2012

Same	secret	key	used	in	the	same	way	
◦ Usually	created	from	the	user	password

