
Address	Resolution
APPLIED	SECURITY	BASICS

Alberto	Caponi	 – alberto.caponi@uniroma2. it

What	does	it	happen	really	on	Internet?

Client
(your devices)

Server
(google, facebook, etc.)

Internet

What a	web	page	is?

e.g. my home page:

http://netgroup.uniroma2.it/alberto-caponi/

a resource (i.e a file), specified by a
URL: Uniform Resource Locator.

Protocol

Sub-Domain

Domain

it:	Top-Level	Domain

Path	to	resource

URL’s components
•Protocol (also called “scheme”)

• How	can	the	web	resource be	accessed?

•Domain	name
• Where is the	page	located?

•Sub-Domain
• In	which specific host of	the	domain?

•Resource	Path
• Which	is	the	specific	path/name	of	the	resource?

http, https, ftp, …

google.com, …

netgroup, www, …

index.html, home.php, …

URL	Parameters:	/login.php?user=alberto&pass=1234

What	a	protocol	is?
• A	common	language	between	client	and	server	that	defines:

• A	common	set	of	rules	&	messages	that	allow	the	client	to	be	understood	by	the	server:

• Web	àHTTP

• E-mail	à SMTP

• File	Transfer	à FTP

• …

&%$! ??

HTTP	Protocol

IP	Address	
10010011101000110001011010000010

10010011 . 10100011 . 00010110 . 10000010

147 . 163 . 22 . 130

/22	à 22	bits	of	network	prefix
Network	Mask:	255.255.252.0

Natural	notation:	32	bit	string

Dotted	notation:	4	numbers	 [0-255]

Host	Number	+	Network	Prefix =	Host	Address

11111111.11111111.11111100.00000000

10010011.10100011.00010110.10000010
Address:	147.163.22.130
Netmask:	255.255.252.0
Network:	147.163.20.0/22	
Hosts:	147.163.20.1	- 147.163.23.254	(1022)

Domain	Name	System

netgroup.uniroma2.it

160.80.221.15

Domain	Name	System:	Poisoning

netgroup.uniroma2.it

120.222.151.11

ARP
ADDRESS	RESOLUTION	PROTOCOL

Problem	statement
Routing	decision	for	packet	X	has	two	possible	outcomes:
◦ You	are	arrived	to	the	final	network:	go	to	host	X
◦ You	are	not	arrived	to	the	final	network:	go	through	 router	interface	Y

In	both	cases	we	have	an	IP	address	on	THIS network.	How	can	we	send	data	to	the	interface?

Need	to	use	physical	network	facilities!

IP	or MAC	addresses?
Physical	Networks	don’t	uses	IP	addresses
◦ IP	address	depends	on	the	network	you	are	connected	 to!
◦ What	if	you	move	from	that	network	to	another	one?

Needs	to	use	the	pre-stamped	address	of	your	network	card:	MAC	address!
Node 1

IP Address: 10.0.0.99
MAC Address: 00-60-08-52-F9-D8

Node 2
IP Address: 10.0.0.1
MAC Address: 00-10-54-CA-E1-40

Ethernet	Packet

PROBLEM: How to translate an IP to a MAC address?

Reaching	a	physical	host
IP	addresses	only	make	sense	to	TCP/IP	protocol	suite!

Physical	networks	have	their	own	hardware	address
◦ e.g.	48	bits	Ethernet	address,	16	or	48	bits	Token	Ring,	16	or	48	bit	FDDI,	...
◦ data-link	layers	may	provide	 the	basis	for	several	network	layers,	not	only	IP!

Address	Resolution	Protocol	à RFC	826
◦ Here	described	 for	Ethernet
◦ More	general:	designed	 for	any	data-link	with	broadcast	capabilities

48 bit Ethernet Address

ARP RARP

32 bit IP address

Manual	mapping
A	possibility,	indeed!!
◦ Nothing	negative,	in	principle
◦ actually	done	in	X.25,	ISDN	(do	not	support	broadcast)

◦ Simply	keep	in	every	host	a	mapping	between	IP	address	and	hardware	address	for	every	IP	device	
connected	to	the	considered	network

Drawbacks
◦ tedious
◦ error	prone
◦ requires	manual	updating
◦ e.g.	when	attaching	a	new	PC,	must	touch	all	others...

ARP
Dynamic	mapping
◦ not	a	concern	for	application	&	user
◦ not	a	concern	for	system	administrator!

Any	network	layer	protocol
◦ not	IP-specific

supported	protocol	in	datalink	layer	
◦ not	a	datalink	layer	protocol	!!!!

Need	datalink	with	broadcasting	capability
◦ e.g.	ethernet	shared	bus

ARP	Idea

131.175.15.8 131.175.15.12 131.175.15.124

Who has IP
address

131.175.15.124 ??

ARP	Idea

131.175.15.8 131.175.15.12 131.175.15.124

Who has IP address
131.175.15.124 ??

????
Not me!

Who has IP
address

131.175.15.124 ??

ARP	Idea

131.175.15.8 131.175.15.12 131.175.15.124
????

Not me!

Who has IP address
131.175.15.124 ??

Who has IP
address

131.175.15.124 ??

ARP	Idea

131.175.15.8 131.175.15.12 131.175.15.124

It is me:
00:00:a2:32:5a:03

????
Not me!

Who has IP
address

131.175.15.124 ??

ARP	cache
Avoids	ARP	request	for	every	IP	datagram!
◦ Entry	lifetime	defaults	to	20min
◦ deleted	if	not	used	in	this	time
◦ 3	minutes	 for	“incomplete”	cache	entries	(i.e.	arp requests	to	non	existent	host)
◦ it	may	be	changed	in	some	implementations

◦ in	particularly	stable	(or	dynamic)	environments	

◦ arp -a	to	display	all	cache	entries
◦ ip neighbor	 show	dev <interface>

Try	a	traceroute or	ping	to	check	ARP	caching!
◦ First	packet	generally	delays	more
◦ includes	 an	ARP	request/reply!

ARP	request/reply:	Ethernet	
Incapsulation

Ethernet	Destination	Address
◦ ff:ff:ff:ff:ff:ff	 (broadcast)	for	ARP	request

Ethernet	Source	Address	
◦ of	ARP	requester

Frame	Type
◦ ARP	request/reply:	0x0806
◦ RARP	request/reply:	0x8035
◦ IP	datagram:	0x0800

Ethernet	
source
address

Ethernet	
destination
address

frame
type ARP	Request	/	Reply CRC

6	bytes 6	bytes 2B 28	bytes	(for	IP) 4	bytes

Protocol
demultiplexing
codes!

ARP	request/reply	format
Hardware	type:	1	for	Ethernet

Protocol	type:	0x0800	for	IP	(0000.1000.0000.0000)
◦ the	same	of	Ethernet	header	field	carrying	IP	datagram!

Hardware	len =	6	bytes	for	Ethernet

Protocol	len =	4	bytes	for	IP

ARP	operation:	
◦ 1=request
◦ 2=reply
◦ 3/4=RARP	req/reply

0 7 8 15 16 31

Protocol	Type

Dest	MAC	address	 (bytes	2-5)

Sender	MAC	address	(bytes	0-3)

Hardware	len Protocol	len ARP	operation

Hardware	Type

Sender	IP	address	(bytes	 0-1)Sender	MAC	address	(bytes	4-5)

Sender	IP	address	(bytes	 2-3) Dest	MAC	address	 (bytes	0-1)

Dest	IP	address	(bytes	0-3)

28
bytes

Sample	ARP	request/reply
IP:	131.175.15.8
MAC:	0:0:8c:3d:54:1 IP:	131.175.15.24

MAC:	0:4f:33:3:ee:67

Sample	ARP	request/reply
IP:	131.175.15.8
MAC:	0:0:8c:3d:54:1 IP:	131.175.15.24

MAC:	0:4f:33:3:ee:67

00:00:8c:3d:54:01

0x06 0x04

0x0806

FF:FF:FF:FF:FF:FF

0x0001 0x0800
0x0001

00:00:8c:3d:54:01
131.175.15.8

00:00:00:00:00:00
131.175.15.24
checksum

Ethernet	Packet:	ARP	REQUEST

dest MAC

src MAC

ARP frame type

Ethernet / IP

MAC=6 / IP=4 / rq=1,rpl=2

src MAC

src IP

dest MAC

dest IP

Ethernet checksum

Sample	ARP	request/reply
IP:	131.175.15.8
MAC:	0:0:8c:3d:54:1 IP:	131.175.15.24

MAC:	0:4f:33:3:ee:67

Ethernet	Packet:	ARP	reply

00:4f:33:03:ee:67

0x06 0x04

0x0806

00:00:8c:3d:54:01

0x0001 0x0800
0x0002

00:4f:33:03:ee:67
131.175.15.24

00:00:8c:3d:54:01
131.175.15.8
checksum

00:00:8c:3d:54:01

0x06 0x04

0x0806

FF:FF:FF:FF:FF:FF

0x0001 0x0800
0x0001

00:00:8c:3d:54:01
131.175.15.8

00:00:00:00:00:00
131.175.15.24
checksum

Ethernet	Packet:	ARP	REQUEST

dest MAC

src MAC

ARP frame type

Ethernet / IP

MAC=6 / IP=4 / rq=1,rpl=2

src MAC

src IP

dest MAC

dest IP

Ethernet checksum

ARP	cache	updating
ARP	requests	carry	requestor	IP/MAC	pair

ARP	requests	are	broadcast
◦ thus,	 they	MUST	be	read	by	everyone

Therefore,	it	comes	for	free,	for	every	computer,	to	update	its	cache	with	requestor	pair

Cannot	do	this	with	ARP	reply,	as	it	is	unicast!

Proxy	ARP
Device	that	responds	to	an	ARP	request	on	behalf	of	some	other	machine
◦ allows	having	ONE	logical	(IP)	network	composed	of	more	physical	networks
◦ especially	important	when	different	 techologies	used	(e.g.	100	PC	ethernet	+	2	PC	dialup	SLIP)

IP:	131.175.15.24

ARP	request	
for	131.175.15.24

ARP	reply	
on	behalf	of		131.175.15.24
returns	router	MAC	address!	Then	router	will	forward	
packets	to	remote	host

Gratuitous	ARP
APR	request	issued	by	an	IP	address	and	addressed	to	the	same	IP	address!!
◦ Clearly	nobody	 else	than	ME	can	answer!
◦ WHY	asking	the	network	which	MAC	address	do	I	have???

Two	main	reasons:
◦ determine	 if	another	host	is	configured	 with	the	same	IP	address
◦ in	this	case	respond	occurs,	and	MAC	address	 of	duplicated	IP	address	 is	known.

◦ Use	gratuitous	ARP	when	just	changed	hardware	address
◦ all	other	hosts	update	their	cache	entries!
◦ A	problem	 is	that,	despite	specified	 in	RFC,	not	all	ARP	cache	implementations	 operate	as	described….

ARP:	not	only	this	mechanism!
Described	mechanism	for	broadcast	networks	(e.g.	based	on	shared	media)

Non	applicable	for	non	broadcast	networks
◦ in	this	case	OTHER	ARP	protocols	are	used
◦ e.g.	distributed	ARP	servers
◦ e.g.	algorithms	to	map	IP	address	 in	network	address	

ARP	Poisoning

Tcpdump:command	 line	network	analyzer

Tcpdump:	some	usage	examples
Capture	all	packets	on	all	interfaces	and	don’t	detect	hostnames:

tcpdump –i any -n

Capture	all	packets	on	eth0	and	save	the	trace	on	file	(the	whole	packets…):

tcpdump –i eth0 –w file –s0

Capture	10	packets	on	eth0	to	destination $DEST:

tcpdump –i eth0 –c 10 dst host $DEST

Capture	all	HTTP	packets	on	eth0:

tcpdump –i eth0 tcp port 80

Capture	all	packets	with	destination	or	source	address	!=	$ADDR	and	port	in	the	range	[10000:20000]:

tcpdump –i eth0 host not $ADDR portrange 10000-20000

Wireshark:	THE	Network	Analyzer
We	can	use	wireshark to	graphically	display	on	the	host	machine	the	trace	captured	with	
tcpdump….

ARP	Poisoning

Attacker
160.80.80.100

00:44:55:11:22:22

Victim 1
160.80.80.10

00:44:55:11:11:11

Victim 2
160.80.80.11

00:44:55:11:33:33

I am 160.80.80.10
MAC 00:44:55:11:22:22

Switch

I am 160.80.80.11
MAC 00:44:55:11:22:22

Poison ARP	cache	of	victims:
◦ Make them believe hacker	MAC	is associated to	the	destination IP
◦ What if an	hacker	makes victims believes to	be	the	DNS?

ARP	Poisoning

Look	at the	gateway	MAC!

Port	Stealing

Port	stealing	attack	– How	to	perform	it
Let’s	say	an	attacker	(evil0,	behind	switch	port	1)	wants	to	steal	pc2	(the	victim)	port	on	the	switch	
(port	2).

SW1	has	to	be	“tricked”	into	thinking	that	pc2	is	behind	the	same	switch	port	as	evil0	(port	1)

To	do	that	we	evil0	has	to	send	a	Ethernet	packet	with	00:00:00:00:00:02	as	source	MAC	address

We	say	that	evil0	has	to	“spoof”	the	victim’s	MAC	address,	or	in	other	words	to	“forge	an	Ethernet	
packet	with	spoofed	source	MAC	address”

evil0	has	to	send	“whatever”	packet	(ARP,	raw	IP,	ICMP,	empty	UDP/TCP,	DNS,	etc..)	with	spoofed	
source	MAC	address	and	the	switch	will	update	the	FDB	properly

Port	stealing:	attack	scenario

victim

SWITCH
sw1

pc2

pc3

iface: eth0
192.168.1.1
00:00:00:00:00:01

iface: eth0
192.168.1.3
00:00:00:00:00:03

Iface: eth0
192.168.1.2
00:00:00:00:00:02iface: eth0

192.168.1.200
00:00:00:00:00:FF

HUB

pc1

evil0
Collision
Domain A

Collision
Domain B

Collision
Domain C

SCAPY
Fortunately	someone	did	this	job	for	us	and	provided	a	python	library	for	packet	forging	
scripting.

Python	is	a	interpreted	and	object	oriented	programming	language.

SCAPY	is	a	python	library	that	provide	(among	other	things)	an	interactive	shell	for	packet	
forging	(from	L2	to	L7).	Moreover	SCAPY	interactive	shell	provide	command	for	packet	
transmission,	reception	and	decoding.

(this	is	a	simplified	view	of	SCAPY	limited	to	what	we	are	interested	in.	For	a	detailed	description	
take	a	look	at:	http://www.secdev.org/conf/scapy_pacsec05.handout.pdf)

SCAPY	example
Build	a	packet	layer	by	layer,	send	it	and	wait	for	the	reply:

>>>	a=IP(dst="www.uniroma2.it",	 id=0x42)

>>>	a.ttl=12

>>>	b=TCP(dport=80,	flags=“S”)

>>>	sr1(a/b)

What	is	needed	but	not	specified	is	automatically	done	by	scapy:
◦ ip.src is	set	by	default	routing	
◦ tcp.sport is	random
◦ a	DNS	request	is	automatically	sent	to	resolve	www.uniroma2.it
◦ all	other	unspecified	 fields	are	set	by	scapy

Just	take	a	look	at	the	C	code	to	see	the	difference…

SCAPY	example	2

Packet	forging	and	transmission

sendp (and	other	send()	methods)	takes	as	optional	argument:
◦ loop=	0	(NO)|1	(YES)
◦ count=num (num:	number	of	packets	to	send)

ETHERNET IP ICMP

src:	00:00:00:00:00:02
dst:	00:00:00:00:00:03
type:		0x0800

src:		192.168.1.1
dst:	192.168.1.3
proto:		01	(ICMP)

echorequest
seq:	01

evil0:$ scapy
>>>pck = Ether(src=“00:00:00:00:00:02”)/
IP(dst=“192.168.1.3”) / ICMP()
>>>sendp(pck)

ARP	Poisoning

ARP	management	in	Linux
The	ARP	cache	can	be	manipulated	with	the	command	“ip neighbour”.	
HINT:	no	need	to	type	“neighbour”.	Try	“ip n”
◦ Run	“man	ip”	for	details.	

Show	the	cache:
◦ pc1:$	ip n	show

Add	a	ARP	entry:
◦ pc1:$	ip n	add	to	“ip_addr”	lladdr “mac_addr”	dev “dev_name”	state	“state_name”
◦ state:	permanent,	stale,	noarp,	rachable

Delete	a	ARP	entry:
◦ pc1:$	ip n	del	to	“ip_addr”	dev “dev_name”

Flush	the	cache:
◦ pc1:$	ip n	flush	dev “dev_name”	state	“state_name”

What	happens	when	a	web	browser	
connects?

Client

DNS

Router

LAN

1. Who	is	DNS	(ARP)

Hypothesis	:		ARP	and	DNS	cache	empty

What	happens	when	a	web	browser	
connects?

Client

DNS

Router

LAN

1. Who	is	DNS	(ARP)
2. Server	name	resolution	 (DNS)

Hypothesis	:		ARP	and	DNS	cache	empty

What	happens	when	a	web	browser	
connects?

Client

DNS

Router

LAN

1. Who	is	DNS	(ARP)
2. Server	name	resolution	 (DNS)
3. Who	is	default	GW?	(ARP)

Hypothesis	:		ARP	and	DNS	cache	empty

What	happens	when	a	web	browser	
connects?

Client

DNS

Router

LAN

1. Who	is	DNS	(ARP)
2. Server	name	resolution	 (DNS)
3. Who	is	default	GW?	(ARP)
4. HTTP	get	trasmission	(HTTP)

Hypothesis	:		ARP	and	DNS	cache	empty

What	happens	when	a	web	browser	
connects?
Let’s	try	it	on	pc1:

Run	tcpdump:
◦ pc1:$	nohup tcpdump –i eth0	–w	/hosthome/dump.pcap –s0&

Open	a	web	page:
◦ pc1:$	links	www.corriere.it

Open	wireshark to	view	pcap:
◦ knoppix:$	wireshark /home/knoppix/dump.pcap

Attack	outline
Attack	GOAL:	
◦ ARP	poisoning	 attack	for	DNS	server	impersonification
◦ Wrong	DNS	resolution	 for	some	websites
◦ HTTP	request	serving

How	do	we	get	there?
◦ ARP	packet	forging	 - SCAPY
◦ DNS	server	impersonification – Dnsmasq
◦ WEB	server	impersonification – Apache2

More	simple	with	Ettercap/Bettercap

INTERNET
Router

DHCP server

DNS

evil0

victim

LAN
10.0.0.0/24

www.google.com
ARP	Poisoning:	I’m	your	DNS!

Spoofed	
ARP	resp.

INTERNET
Router

DHCP server

DNS

evil0

victim

LAN
10.0.0.0/24

www.google.com
ARP	Poisoning:	I’m	also	your	destination!

DSN		Req/Resp

INTERNET
Router

DHCP server

DNS

evil0

victim

LAN
10.0.0.0/24

www.google.com
Attack	scenario	:	I’m	google!

HTTP

ARP	poisoning	with	SCAPY
GOAL:	evil0	wants	to	poison	victim’s	ARP	cache	and	steal	DNS’s	IP	address
◦ Victim	- IP:			10.0.0.101			
◦ Victim	- L2:		00:00:00:00:00:AA
◦ DNS	server	- IP:				10.0.0.2
◦ Attacker	- L2:				00:00:00:00:00:FF	

evil0:$ scapy

>>ips="10.0.0.2"
>>ipd="10.0.0.101"
>>hs="00:00:00:00:00:FF"
>>hd="00:00:00:00:00:AA"

>>a=Ether(src=hs,dst=hd)
>>b=ARP(op=2,psrc=ips,pdst=ipd,hwdst=hd,hwsrc=hs)
>>p=a/b
>>sendp(p,loop=1,inter=1)

What’s	going	on?
Watch	ARP	cache
◦ victim:$	watch	“ip n”

Resolve	a	name:
◦ victim:$	host	www.repubblica.com

Open	the	browser

victim:$	links	www.facebook.com

victim:$	links	www.google.com

Is	there	anything	we	can	do?
◦ ARP	and	DNS	static	entry	(“ip n	add”	and	“/etc/hosts”)

INTERNET
Router

DHCP server

DNS

evil0

victim

LAN
10.0.0.0/24

www.google.com
MITM	Attack:	I’m	the	default	GW

Spoofed	
ARP	resp.

INTERNET
Router

DHCP server

DNS

evil0

victim

LAN
10.0.0.0/24

www.google.com
MITM	Attack:	I	own	your	packets!

Getting	an	IP	address
REVERSE	ADDRESS	RESOLUTION	PROTOCOL	(RARP)

The	problem
Bootstrapping	a	diskless	terminal
◦ this	was	the	original	problem	 in	the	70s	and	80s

Reverse	ARP	[RFC903]
◦ a	way	to	obtain	an	IP	address	starting	from	MAC	address

Today	problem:	dynamic	IP	address	assignment
◦ limited	pool	of	addresses	assigned	only	when	needed

RARP	not	sufficiently	general	for	modern	usage
◦ BOOTP	(Bootstrap	Protocol	 - RFC	951):	significant	changes	to	RARP	(a	different	approach)
◦ DHCP	(Dynamic	Host	Configuration	 Protocol	- RFC	1541):	extends	and	replaces	BOOTP

RARP	packet	format
almost	identical	to	ARP.	Differences:

Src addrDest addr
ftyp:
0x

8035
RARP Request / Reply CRC

6	bytes 6	bytes 2B 28	bytes	(for	IP) 4	bytes

0 7 8 15 16 31

Protocol	Type

Dest	MAC	address	(bytes	2-5)

Sender	MAC	address	(bytes	0-3)

Hardware	len Protocol	len oper:	3	(RARP	req)	or	4	(RARP	reply)

Hardware	Type

Sender	 IP	address	(bytes	0-1)Sender	MAC	address	(bytes	4-5)

Sender	 IP	address	(bytes	2-3) Dest	MAC	address	(bytes	0-1)

Dest	IP	address	(bytes	0-3)

RARP	Request/replyIP	=	????
MAC	=	0:0:8c:3d:54:1

My	MAC	address	is	
0:0:8c:3d:54:1.
What	is	my	IP	address??

Broadcast	request

Your	IP	is
131.175.21.53

Unicast	reply

RARP	problems
Network	traffic
◦ for	reliability,	multiple	RARP	servers	need	to	be	configured	 on	the	same	Ethernet
◦ to	allow	bootstrap	of	terminals	even	when	one	server	is	down

◦ But	this	implies	 that	ALL	servers	simultaneously	 respond	 to	RARP	request
◦ contention	on	the	Ethernet	occurs

RARP	requests	not	forwarded	by		routers
◦ being	hardware	level	broadcasts...

RARP	fundamental	limit
Allows	only	to	retrieve	the	IP	address	information
◦ and	what	about	all	the	remaining		full	set	of	TCPIP	configuration	 parameters???
◦ Netmask?
◦ name	of	servers,	 proxies,	etc?
◦ other	proprietary/vendor/ISP-specific	 info?

This	is	the	main	reason	that	has	driven	to	engineer	and	use	BOOTP	and	DHCP

BOOTP/DHCP	approach
Requests/replies	encapsulated	in	UDP	datagrams
◦ may	cross	routers
◦ no	more	dependent	 on	physical	medium

request	addressing:
◦ destination	 IP	=	255.255.255.255
◦ source	IP	=	0.0.0.0
◦ destination	port	(BOOTP):	67
◦ source	port	(BOOTP):	68

router	crossing:
◦ router	configured	 as	BOOTP	relay	agent
◦ forwards	broadcast	UDP	requests	with	destination	port	67

BOOTP	parameters	exchange
Many	more	parameters
◦ client	IP	address	(when	static	IP	is	assigned)
◦ your	IP	address	(when	dynamic	server	assignment)
◦ gateway	IP	address	(bootp	 relay	agent	- router	- IP)
◦ server	hostname
◦ boot	 filename

Fundamental:	vendor-specific	information	field	(64	bytes)
◦ seems	a	lot	of	space:	not	true!
◦ DHCP	uses	a	312	vendor-specific	 field!

Vendor	specific	 information
format	allows	general	 information	exchange
E.g.:	subnet	mask:
◦ tag=1,	len=4,	parameter=32	bit	subnet	mask

e.g.:	time	offset:	
◦ tag=2,	len=4,	parameter=time	
(seconds	after	midnight,	 jan	1	1900	UTC)

e.g.	gateway	(variable	item)
◦ tag=3,	len=N,	list	of	gateway	IPaddr	(first	preferred)

e.g.	DNS	server	(tag	6)

Tag
1	byte

Len
1	byte Parameter	exchanged

