Address Resolution

APPLIED SECURITY BASICS

Alberto Caponi — alberto.caponi@uniroma?.it

What does it happen really on Internet?

Internet

Server

Client (google, facebook, etc.)

(your devices)

What a web page is?

a resource (1.¢ a file), specified by a
URL: Uniform Resource Locator.

e.g. my home page:

httﬂ://netgroup‘.uniromaZ.it/alberto-caponi /

—/ k
Protocol Path to resource

Sub-Domain it: Top-Level Domain

Domain

URL's components

*Protocol (also called “scheme”)
* How can the web resource be accessed?

*Domain name [
» google.com, ...

‘ http, https, ftp, ...

* Where is the page located?

*Sub-Domain
* In which specific host of the domain? ‘ netgroup, www, ...

*Resource Path
* Which is the specific path/name of the resource?

M) index.html, home.php, ...

L URL Parameters: /login.php?user=alberto&pass=1234

What a protocol is?

* A common language between client and server that defines:

* A common set of rules & messages that allow the client to be understood by the server:

* Web > HTTP
* E-mail 2 SMTP
* File Transfer = FTP O

2 2
1 ¥

HTTP Protocol

Request Message

GET /home.html HTTP/1.1
Host: xyz.com
HTTP Client(s) Connection: Keep-Alive
http://xyz.com/home.html User-Agent: Mozilla/4.e
Accept: image/gif, image/jpeg
ey B B e I N R blank line ------

Client-side Response Message

N
RIOEEAmE =" HTTP/1.1 200 OK

Date: ...
Server: Apache/2.0.45
Last-Modified: ...
Content-Length: 105
~ Content-Type: text/html
----- blank line ------
<html>
<head><title>My Home</title></head>
<body><h1>This is my Home Page</h1>

(Empty body) l/<:%

T

ﬁ HTTP Server
Ju Server-side
Programs

</body></html> ,///

HTTP over TCP/IP

alberto-caponi/

| fonts.css?ver=4.1.1
=) /wp-content/themes/accesspress-ray/css

css?family=0Open+Sans%3A400%2C400italic%2C300italic%2C300%2C600%2C60...

—J fonts.googleapis.com

cs; font-awesome.min.css?ver=4.1.1
=1 /wp-content/themes/accesspress-ray/css

style.css?ver=4.1.1
—) /wp-content/themes/accesspress-ray

—| jquery.bxslider.css?ver=4.1.1
—J /wp-content/themes/accesspress-ray/css

nivo-lightbox.css?ver=4.1.1
= /wp-content/themes/accesspress-ray/css

: js?v=3.exp%3Fsensor¥3Dfalse&ver=3.0
= maps.googleapis.com/maps/api

= jquery.js?ver=1.11.1

=1 /wp-includes/js/jquery

| responsive.css?ver=4.1.1
—1 /wp-content/themes/accesspress-ray/css

= jquery-migrate.min.js?ver=1.2.1
=] /wp-includes/js/jquery

Method

GET

GET

GET

GET

GET

GET

GET

GET

GET

GET

GET

Status
Text
200
OK

200
OK

200
OK

200
OK

200
OK

200
OK

200
OK

200
OK

200
OK

200
OK

200
OK

Type

document

stylesheet

stylesheet

stylesheet

stylesheet

stylesheet

stylesheet

script

script

stylesheet

script

IP Address

Natural notation: 32 bit string 10010011101000110001011010000010

b

10010011 . 10100011 . 00010110 . 10000010

b

Dotted notation: 4 numbers [0-255] 147 . 163 . 22 . 130

Address: 147.163.22.130

Netmask: 255.255.252.0 10010011.10100011.00010110.10000010
Network: 147.163.20.0/22

Hosts: 147.163.20.1- 147.163.23.254 (1022) I1111111.11111111.11111100.00000000
Host Number + Network Prefix = Host Address /22 - 22 bits of network prefix

Network Mask: 255.255.252.0

Domain Name System

o —
netgroup.uniromaz2.it > ' '
|
< 160.80.221.15

€ regoupunromad tisterts-caoes Y]

1] /Vcvwrins o

Alberto Caponi

Domain Name System: Poisoning

P —

—

netgroup.uniromaz.it > -
i .

ARP

ADDRESS RESOLUTION PROTOCOL

Problem statement

Routing decision for packet X has two possible outcomes:
° You are arrived to the final network: go to host X

> You are not arrived to the final network: go through router interface Y

In both cases we have an IP address on THIS network. How can we send datato the interface?

Need to use physical network facilities!

IP or MAC addresses?

Physical Networks don’t uses IP addresses
o |P address depends on the network you are connected to!

o What if you move from that network to another one?

Needs to use the pre-stamped address of your network card: MAC address!

Node 1 Node 2
IP Address: 10.0.0.99 IP Address: 10.0.0.1
MAC Address: 00-60-08-52-F9-D8 MAC Address: 00-10-54-CA-E1-40

I,. — . PROBLEM: How to translate an IP to a MAC address? I —.

1 I
O= |- 0=

I Ethernet Packet I

Reaching a physical host

IP addresses only make sense to TCP/IP protocol suite!

Physical networks have theirown hardware address
o e.g. 48 bits Ethernet address, 16 or 48 bits Token Ring, 16 or 48 bit FDDI, ...

o data-link layers may provide the basis for several network layers, not only IP!

Address Resolution Protocol = RFC 826
o Here described for Ethernet

> More general: designed for any data-link with broadcast capabilities

y »y

Manual mapping

A possibility, indeed!!
> Nothing negative, in principle
o actually done in X.25, ISDN (do not support broadcast)

o Simply keep in every host a mapping between IP address and hardware address for every IP device
connected to the considered network

Drawbacks
o tedious

° error prone
° requires manual updating

° e.g.when attaching a new PC, must touch all others...

ARP

Dynamic mapping
° not a concern for application & user

° not a concern for system administrator!

Any network layer protocol
> not IP-specific

supported protocol in datalink layer
° not a datalink layer protocol !!!!

Need datalink with broadcasting capability
o e.g. ethernet shared bus

ARP Idea

131.175.15.8 131.175.15.12 131.175.15.124
\ h

Who has IP
address
131.175.15.124 ??

ARP Idea

131.175.15.8 131.175.15.12 131.175.15.124
\ |
" h

Who has IP
address
131.175.15.124 ??

Who has IP address
131.175.15.124 77

ARP Idea

131.175.15.8 131.175.15.12 131.175.15.124

< W< W oeeee

Who has IP
address
131.175.15.124 ??

Who has IP address
131.175.15.124 77

ARP Idea

131.175.15.8 131.175.15.12 131.175.15.124

It is me:
00:00:a2:32:5a:03

Who has IP
address
131.175.15.124 ??

ARP cache

Avoids ARPrequest for every IP datagram!
o Entry lifetime defaults to 20min

o deleted if not used in this time

> 3 minutes for “incomplete” cache entries (i.e. arp requests to non existent host)

> it may be changed in some implementations macbook-markin:~ markin$ ip n show dev en®
° in particularly stable (or dynamic) environments 2620:9b::1912:9¢c1c dev ham0® 1lladdr 7a:79:19:12:9c:1c REACHABLE

fe80::1 dev 100 lladdr (incomplete) REACHABLE

° arp -ato display all cache entries fe80::9610:3eff:feal: 2067 dev en® lladdr 94:10:3e:a1:20:67 STALE
o i . hb h d <i t f S fe80::a65e:60ff:fedd:63 dev en® lladdr ad:5e:60:d4:0:63 REACHABLE
1P NEIgNbor snow aev <Interrace fe80::8cdb:79ff: fe2f:e897 dev awdl® lladdr 8e:db:79:2f:e8:97 REACHABLE

fe80::7879:19ff:fel2:9clc dev ham® lladdr 7a:79:19:12:9c:1c REACHABLE
192.168.100.1 dev en® 1lladdr 94:10:3e:21:20:67 REACHABLE
192.168.100.6 dev en® lladdr 30:cd:a7:b5:31:10 REACHABLE
192.168.100.194 dev en® lladdr 28:c6:8e:35:¢c5:1 REACHABLE
192.168.100.255 dev en® INCOMPLETE

Try a traceroute or ping to check ARP caching!
o First packet generally delays more

> includes an ARP request/reply!

ARP request/reply: Ethernet
Incapsulation

6 bytes 6 bytes 2B 28 bytes (for IP) 4 bytes

Ethernet Destination Address
o ff.ff.ff.ff.ff:ff (broadcast) for ARP request

Ethernet Source Address
o of ARP requester

Frame Type
> ARP request/reply: 0x0806 Protocol
o RARP request/reply: 0x8035 demultiplexing
o |P datagram: 0x0800 codes!

ARP request/reply format

Hardware type: 1 for Ethernet

Protocol type: 0x0800 for IP (0000.1000.0000.0000)
o the same of Ethernet header field carrying IP datagram!

Hardware len = 6 bytes for Ethernet 0

1516

Protocol len = 4 bytes for IP

Hardware Type Protocol Type

ARP operation:

Hardware len

Protocol len ARP operation

° 1=request Sender MAC address (bytes 0-3)
° 2=reply Sender MAC address (bytes 4-5) Sender IP address (bytes 0-1)
o 3/4=RARP req/reply

Sender IP address (bytes 2-3) Dest MAC address (bytes 0-1)

Dest MAC address (bytes 2-5)

Dest IP address (bytes 0-3)

28
bytes

Sample ARP request/reply

IP: 131.175.15.8
u MAC: 0:0:8c:3d:54:1 IP- 131.175.15.24 u
MAC: 0:4f:33:3:ee:67

S . —

Sample ARP request/reply

IP: 131.175.15.8
!ﬁ MAC: 0:0:8c:3d:54:1 IP- 131.175.15.24 E‘
MAC: 0:4f:33:3:ee:67 !;

Ethernet Packet: ARP REQUEST >

FF:FF:FF:FF:FF:FF dest MAC
00:00:8c:3d:54:01 src MAC
0x0806 ARP frame type
0x0001 0x0800 Ethernet / IP
0x06 | 0x04 0x0001 MAC=6/1P=4 /rq=1,rpl=2
00:00:8c:3d:54:01 src MAC
131.175.15.8 src IP
00:00:00:00:00:00 dest MAC
131.175.15.24 dest IP
checksum Ethernet checksum

Sample ARP request/reply
!: MAC: 0:0:8¢:3:34:1 IP: 131.175.15.24 ‘:l

— MAC: 0:4f:33:3:ee:67 ===
R EE

Ethernet Packet: ARP REQUEST > < Ethernet Packet: ARP reply

FF:FF:FF:FF:FF:FF dest MAC 00:00:8c:3d:54:01
00:00:8c:3d:54:01 src MAC 00:4f:33:03:ee:67
0x0806 ARP frame type 0x0806
0x0001 0x0800 Ethernet / IP 0x0001 0x0800
0x06 | 0x04 0x0001 MAC=6/1P=4 / rq=1,rpl=2 0x06 | 0x04 0x0002
00:00:8c:3d:54:01 src MAC 00:4f:33:03:ee:67
131.175.15.8 src IP 131.175.15.24
00:00:00:00:00:00 dest MAC 00:00:8c:3d:54:01
131.175.15.24 dest IP 131.175.15.8
checksum Ethernet checksum checksum

ARP cache updating

ARP requests carry requestor IP/MAC pair

ARP requests are broadcast
> thus, they MUST be read by everyone

Therefore, it comes for free, for every computer, to updateits cache with requestor pair

Cannotdo this with ARP reply, as it is unicast!

Proxy ARP

Device thatrespondsto an ARP request on behalf of some other machine
o allows having ONE logical (IP) network composed of more physical networks

o especially important when different techologies used (e.g. 100 PC ethernet + 2 PC dialup SLIP)

ARP request
n for 131.175.15.24
—— > - y
‘—I | : [IP: 131.175.15.24

ARP reply

on behalf of 131.175.15.24
returns router MAC address! Then router will forward
packets to remote host

Gratuitous ARP

APR requestissued by an IP address and addressed to the same IP address!!
o Clearly nobody else than ME can answer!

o WHY asking the network which MAC address do | have???

Two mainreasons:
o determine if another host is configured with the same IP address

° in this case respond occurs, and MAC address of duplicated IP address is known.
o Use gratuitous ARP when just changed hardware address

o all other hosts update their cache entries!

o A problem isthat, despite specified in RFC, not all ARP cache implementations operate as described....

ARP: not only this mechanism!

Described mechanism for broadcast networks (e.g. based on shared media)

Non applicable for non broadcast networks

° in this case OTHER ARP protocols are used
o e.g.distributed ARP servers

o e.g.algorithms to map IP address in network address

ARP Poisoning

cpdump:command line network analyzer

N OX
File Edit View Terminal Tabs Help

17:13:21.395966 1p 10.10.2.17.36115 > 74.125.19.19.80: http http.method:POST htt
p.server:mall.google.com 1448
17:13:21.395982 ip 10.10.2.17.
17:13:21.396061 ip 10.10.2.17.
part/form-data 1448
:13:21.396636 1p 74.125.19.19.80 > 10.10.2.17.36115: http
:13:21.396654 ip 74.125.19.19.80 > 10.10.2.17.36115: http
:13:21.396662 ip 10.10.2.17.36115 > 74.125.19.19.80: http
:13:21.396723 ip 74.125.19.19.80 > 10.10.2.17.36115: http
:13:21.396993 ip 74.125.19.19.80 > 10.10.2.17.36115: http
:13:22.159636 1ip 74.125.19.19.80 > 10.10.2.17.36115: http http.mime_type:text/
html 1328
17:13:22.159664 1ip 10.10.2.17.36115 > 74.125.19.19.80: http 0
17:13:37.903428 ip 10.10.2.17.36115 > 74.125.19.19.80: http http.method:POST htt
.server:mail.google.com http.mime_type:application/x form-urlencoded 1448
:13:37.903445 ip 10.10.2.17.36115 > 74.125.19.19.80: http 241
:13:37.904146 1p 74.125.19.19.80 > 10.10.2.17.36115: http ©
.904172 ip 74.125.19.19.80 > 10.10.2.17.36115: http ©
.904183 1ip 10.10.2.17.36115 > 74.125.19.19.80: http 53
.904478 1p 74.125.19.19.80 > 10.10.2.17.36115: http ©
3.265800 1p 74.125.19.19.80 > 10.10.2.17.36115: http http.mime_type:text/

6115 > 74.125.19.19.80: http 204
6115 > 74.125.19.19.80: http http.mime type:multi

3
5
3

3.265826 1p 10.10.2.17.36115 > 74.125.19.19.80: http ©

Tcpdump: some usage examples

Capture all packets on all interfaces and don’t detect hostnames:

tcpdump -1 any —-n

Capture all packets on ethO and save the trace on file (the whole packets...):

tcpdump -1 ethO -w file -sO0
Capture 10 packets on ethO to destination S$SDEST:

tcpdump —-i ethO -c 10 dst host SDEST

Capture all HTTP packets on ethO:

tcpdump -1 ethO0 tcp port 80
Capture all packets with destination or source address != SADDR and port in the range [10000:20000]:

tcpdump —-i eth0 host not $ADDR portrange 10000-20000

Wireshark: THE Network Analyzer

We can use wireshark to graphically display on the host machine the trace captured with
tcpdump....

File Edit View Go Capture Analyze Statistics Help

BEsoy sEeRr & +»F 4 EBE &

E]Eilter: [I -][4 Expression...] %glear [&l_\pply]
No. . Time Source Destination Protocol Info o=t
Ll Lo.USst/Iver Lvo.vs “.'m‘.‘milal?xwa?];fxvxi‘Ulva—::l:urruu'rvr‘qwr’y—rvapvn'
12 15.647269 192.168.1.101 208.67.222.222 DNS Standard query A www. | |
13 15.937059 208.67.222.222 192.168.1.101 DNS Standard query respon
14 15.937457 192.168.1.101 75.126.43.232 TCP 45861 > www [SYN] Seq
15 16.314591 75.126.43.232 192.168.1.101 TCP www > 45861 [SYN, ACK
16 16.314665 192.168.1.101 75.126.43.232 TCP 45861 > www [ACK] Seq
17 16.314984 192.168.1.101 75.126.43.232 TCP [TCP segment of a rea
18 16.315020 192.168.1.101 75.126.43.232 TCP [TCP segment of a rea
19 16.724366 75.126.43.232 192.168.1.101 TCP www > 45861 [ACK] Seq
20 16.732070 75.126.43.232 192.168.1.101 TCP www > 45861 [ACK] Seq
21 18.072290 192.168.1.101 208.67.222.222 DNS Standard query A www.
22 18.360176 208.67.222.222 192.168.1.101 DNS Standard query respon
23 18.445066 192.168.1.101 208.67.222.222 DNS Standard query AAAA w| |
[2 AAQ5AA Q 0 nR A ndard Ane A vtan &

| [»)

> Frame 1 (42 bytes on wire, 42 bytes captured) \
b _Etharnat TT Gre: D.link Ma:fR8:44 (AN=17:Q2:02:fF:44) Net: Ciccn.li Ra:cA:0h (AN-12:2q:) E

[[»]

(clo/clollO0 18 39 6a c6 8b 00 17 9a Oa f6 44 08 06 00 Ol
cl}[clMOS 00 06 04 00 Ol 00 17 9a Oa f6 44 cO a8 0l 6
(cloz/ol00 00 00 00 OO0 00 cO a8

Frame (frame), 42 bytes P:582 D: 582 M: 0 Drops: 0

ARP Poisoning

Poison ARP cache of victims:
o Make them believe hacker MAC is associated to the destination IP

o What if an hacker makes victims believes to be the DNS?

Switch
§§j‘ 1 1 1 1 WEinimi ’;
——
| am 160.80.80.11 | am 160.80.80.10
MAC 00:44:55:11:22:22 MAC 00:44:55:11:22:22
'L:,ffw —- ‘%»\
Victim 1 Attacker Victim 2
160.80.80.10 160.80.80.100 160.80.80.11
00:44:55:11:11:11 00:44:55:11:22:22 00:44:55:11:33:33

ARP Poisoning

macbook-markin:~ markin$ ip -4 neighbor show dev en®
192.168.43.1 dev en® lladdr /78:f8:82:a5:55:c1 REACHABLE

macbook-markin:~ markin$ ip -4 neighbor show dev en0
192.168.43.1 dev en® lladdr 0:c:29:f0:b:61 REACHABLE
192.168.43.45 dev en® lladdr a4:5e:60:d4:0:63 REACHABLE

192.168.43.155 dev en® lladdr 0:¢c:29:f0:b:61 REACHABLE
macbhook-markin:~ markin$

Look at the gateway MAC!

Port Stealing

Port stealing attack — How to perform it

z_et’s sza)y an attacker (evil0, behind switch port 1) wants to steal pc2 (the victim) port on the switch
port 2).

SW1 has to be “tricked” into thinking that pc2 is behind the same switch port as evilO (port 1)
To do that we evil0 has to send a Ethernet packet with 00:00:00:00:00:02 as source MAC address

We say that evil0 has to “spoof” the victim’s MAC address, or in other words to “forge an Ethernet
packet with spoofed source MAC address”

evil0 has to send “whatever” packet (ARP, raw IP, ICMP, empty UDP/TCP, DNS, etc..) with spoofed
source MAC address and the switch will update the FDB properly

Port stealing: attack scenario

Iface: ethO
192.168.1.2
00:00:00:00:00:02

iface: ethO L.
192.168.1.200 Collision
00:00:00:00:00:FF

Domain B

evil0
Collision

) iface: ethO iface: ethO
Domain A 951651 1 192.168.1.3
00:00:00:00:00:01

00:00:00:00:00:03

Collision
Domain C

SWITCH
sw1

SCAPY

Fortunately someone did this job for us and provided a python library for packet forging
scripting.

Pythonis a interpreted and object oriented programminglanguage.

SCAPY is a python library that provide (amongother things) an interactive shell for packet
forging (from L2 to L7). Moreover SCAPY interactive shell provide command for packet
transmission, reception and decoding.

(thisis a simplified view of SCAPY limited to what we are interested in. For a detailed description
take a look at: http://www.secdev.org/conf/scapy pacsec05.handout.pdf)

SCAPY example

Build a packet layer by layer, send it and wait for the reply:

>>> a=IP(dst="www.uniroma?2.it", id=0x42)
>>> q.ttl=12

>>> b=TCP(dport=80, flags="“S”)

>>> sri(a/b)

What is needed but not specified is automatically done by scapy:
° ip.srcis set by default routing

° tcp.sport is random
° a DNSrequest is automatically sent to resolve www.uniromaZ2.it
o all other unspecified fields are set by scapy

Just take a look at the Ccode to see the difference...

SCAPY example 2

Welcome to Scapy (2.0.0.11 beta)

>>> p = Ether()/IP()/ICMP()/"Ciao Mondo”

>>> p[IP].dst = "8.8.8.8"

>>> p

<Ether type=IPv4 |<IP frag=0 proto=icmp
dst=8.8.8.8 |<ICMP |<Raw load='Ciao Mondo' |
>>>>

>>> r = srpl(p)

Begin emission:

Finished to send 1 packets.

%

Received 1 packets, got 1 answers, remaining ©
packets

<Ether dst=00:13:02:49:1c:f5
src=00:1f:3f:f2:00:6d type=IPv4 |<IP version=4L
ihl=5L tos=0x0 len=46 id=19699 flags= frag=0L
ttl=51 proto=icmp chksum=0xb8lc src=8.8.8.8
dst=192.168.178.7 options='"' |<ICMP type=echo-
reply code=0 chksum=0x66fc id=0x0 seq=0x0 |<Raw
load="'Ciao Mondo\x00\x00\x00\x00\x00\x00\x00\x00'
| >>>>

>>>

Packet forging and transmission

evil0:$ scapy

>>>pck = Ether(src="00:00:00:00:00:02")/
IP(dst=%"192.168.1.3") / ICMP ()

>>>sendp (pck)

ETHERNET IP ICMP
src: 00:00:00:00:00:02 src: 192.168.1.1 echorequest
dst: 00:00:00:00:00:03 dst: 192.168.1.3 seq: 01
type: 0x0800 proto: 01 (ICMP)

sendp (and other send() methods) takes as optionalargument:
° loop= 0 (NO)|1 (YES)
o count=num (num: number of packets to send)

ARP Poisoning

ARP management in Linux

The ARP cache can be manipulated with the command “ip neighbour”.

HINT: no need to type “neighbour”. Try “ip n”
° Run “man ip” for details.

Show the cache:
> pcl:Sipn show

Add a ARP entry:
o pcl:Sipn add to “ip_addr” lladdr “mac_addr” dev “dev_name” state “state_name”
o state: permanent, stale, noarp, rachable

Delete a ARP entry:
> pcl:Sipn del to “ip_addr” dev “dev_name”

Flush the cache:
o pcl:Sipn flush dev “dev_name” state “state_name”

What happens when a web browser
connects?

T Hypothesis : ARP and DNS cache empty

,, ‘g 1. Who is DNS (ARP)
. Client @ |
Router -

What happens when a web browser
connects?

eI Hypothesis : ARP and DNS cache empty

,, '§ 1. Who is DNS (ARP)
i Client @
Router /

2. Server name resolution (DNS)

What happens when a web browser
connects?

eI Hypothesis : ARP and DNS cache empty

4
4
4
d
d
4
[HY

. Who is DNS (ARP)
Server name resolution (DNS)

i Client @ 3. Who is default GW? (ARP)
Router /

g

What happens when a web browser
connects?

eI Hypothesis : ARP and DNS cache empty

,, '§ Who is DNS (ARP)
. Client @ |
Router /

Server name resolution (DNS)
Who is default GW? (ARP)
HTTP get trasmission (HTTP)

B wNE

What happens when a web browser
connects?

Let’s try it on pcl:

Run tcpdump:
> pcl:S nohup tcpdump —i ethO —w /hosthome/dump.pcap —s0&

Open a web page:
o pcl:S links www.corriere.it

Open wireshark to view pcap:
> knoppix:S wireshark /home/knoppix/dump.pcap

Attack outline

Attack GOAL:
o ARP poisoning attack for DNS server impersonification

> Wrong DNS resolution for some websites
o HTTP request serving

How do we get there?
o ARP packet forging - SCAPY

> DNS server impersonification — Dnsmasq More simple with Ettercap/Bettercap

o WEB server impersonification — Apache2

ARP Poisoning: I'm your DNS!

Q www.google.com

/ \

/ DNS \

/
/
/
@ LAN
\ 10.0.0.0/24
A <L Router
evilO ® ARP resp. /DHCP server
\\\ Q //
ictim

ARP Poisoning: I'm also your destination!
Q www.google.com
S

— —

/
/
/
@ LAN
\ 10.0.0.0/24
\\ DSN Req/Resp

victim

Attack scenario : I'm google!

Q www.google.com

/
/
/
LAN
; 10.0.0.0/24
\
h HTTP
evil0 \\)

victim

ARP poisoning with SCAPY

GOAL: evilOwants to poison victim’s ARP cache and steal DNS’s IP address
° Victim - IP: 10.0.0.101

o Victim - L2: 00:00:00:00:00:AA
o DNS server - |P: 10.0.0.2
o Attacker-L2: 00:00:00:00:00:FF

evilO:$ scapy

>>1ps="10.0.0.2"
>>ipd="10.0.0.101"
>>hs="00:00:00:00:00:FF"
>>hd="00:00:00:00:00:AA"

>>a=FEther (src=hs, dst=hd)

>>b=ARP (0p=2,psrc=ips, pdst=ipd, hwdst=hd, hwsrc=hs)
>>p=a/b

>>sendp (p, loop=1, inter=1)

What’s going on”

Watch ARP cache
o victim:$S watch “ip n”

Resolve a name:
> victim:$S host www.repubblica.com

Open the browser
victim:S links www.facebook.com

victim:S links www.google.com

Is there anythingwe can do?
o ARP and DNS static entry (“ip n add” and “/etc/hosts”)

MITM Attack: I’'m the default GW
www.google.com

Spoofed 10.0.0.0/24
@

evi

ARP resp.

MITM Attack: | own your packets!
www.google.com
5

Getting an |IP address

REVERSE ADDRESS RESOLUTION PROTOCOL (RARP)

The problem

Bootstrapping a diskless terminal
° this was the original problem in the 70s and 80s

Reverse ARP [RFC903]
° a way to obtain an IP address starting from MAC address

Today problem:dynamiclP address assignment
° limited pool of addresses assigned only when needed

RARP not sufficiently general for modern usage
> BOOTP (Bootstrap Protocol - RFC 951): significant changes to RARP (a different approach)

o DHCP (Dynamic Host Configuration Protocol - RFC 1541): extends and replaces BOOTP

RARP packet format
almost. Jdemlnga o ARE., Lifferencesye

Dest addr CRC

0 7 8 1516 31
Hardware Type Protocol Type

Hardware len Protocol len € | oper: 3 (RARP req) or 4 (RARP reply)

Sender MAC address (bytes 0-3)

A 4

Sender MAC address (bytes 4-5) Sender IP address (bytes 0-1)

Sender IP address (bytes 2-3) Dest MAC address (bytes 0-1)

Dest MAC address (bytes 2-5)

Dest IP address (bytes 0-3)

RARP. Request/reply

MAC = 0:0:8c:3d:54:1
Your IP is

u 131.175.21.53

g < Unicast reply

Broadcast request
OO O

My MAC address is
0:0:8c:3d:54:1.
What is my IP address??

RARP problems

Network traffic
o for reliability, multiple RARP servers need to be configured on the same Ethernet

o toallow bootstrap of terminals even when one server is down

o But this implies that ALL servers simultaneously respond to RARP request

o contention on the Ethernet occurs

RARP requests not forwarded by routers
° being hardware level broadcasts...

RARP fundamental limit

Allows only to retrieve the IP addressinformation
o and what about all the remaining full set of TCPIP configuration parameters???

o Netmask?

° name of servers, proxies, etc?

o other proprietary/vendor/ISP-specific info?

Thisis the mainreason that hasdriven to engineer and use BOOTP and DHCP

BOOTP/DHCP approach

Requests/replies encapsulated in UDP datagrams
° may Cross routers

° no more dependent on physical medium

request addressing:
o destination IP = 255.255.255.255
> source IP =0.0.0.0
o destination port (BOOTP): 67
> source port (BOOTP): 68

router crossing:
o router configured as BOOTP relay agent

o forwards broadcast UDP requests with destination port 67

BOOTP parameters exchange

Many more parameters
o client IP address (when static IP is assigned)

o

your IP address (when dynamic server assignment)

(¢]

gateway IP address (bootp relay agent - router - IP)

(¢]

server hostname

o

boot filename

Fundamental: vendor-specificinformation field (64 bytes)
o seems a lot of space: not true!

o DHCP uses a 312 vendor-specific field!

Vendor specific information
format allows general information exchange

E.g.: subnet mask: Tag Len
° tag=1, len=4, parawe%el?¥tjez :)i% Mﬁet mask

e.g.: time offset:

° tag=2, len=4, parameter=time
(seconds after midnight, jan 1 1900 UTC)

Parameter exchanged

e.g. gateway (variableitem)
o tag=3, len=N, list of gateway IPaddr (first preferred)

e.g. DNS server (tag 6)

