- From: Fabio Peresempio <
>
- To: Docenti Biologia <
>, Docenti Chimica <
>, Docenti Fisica <
>, Docenti Matematica <
>
- Cc: CERRITO LUCIO <
>, Macroarea Scienze <
>
- Subject: [docenti-chimica] 5o colloquio interdip. sui nuovi metodi computazionali; M. Buzzicotti: "Generation and Reconstruction of Lagrangian Turbulence with,Stochastic Generative Models", in 19, 14:30 del 4/12
- Date: Tue, 26 Nov 2024 14:48:14 +0100
Ai Proff. Ordinari
Ai Proff. Associati
Ai Ricercatori
________________________
Gentili colleghe/i,
ricevo e vi giro la comunicazione con argomento in oggetto.
Cordialmente,
Prof. Lucio Cerrito
Coordinatore della Macroarea di Scienze MM.FF.NN.
_____________
Gentili Colleghe e Colleghi,
il terzo colloquio interdipartimentale sui nuovi metodi computazionali si
svolgerà in
aula 19, a partire dalle 14:30
di mercoledì 4 dicembre 2024.
L'oratore sarÃ
Michele Buzzicotti,
del Dipartimento di Fisica
che ci parlerà di
"Generation and Reconstruction of Lagrangian
Turbulence with,Stochastic Generative Models".
Il riassunto del contenuto del seminario è riportato alla fine del presente
messaggio e nel volantino allegato.
Con i nostri più cordiali saluti,
Gianfranco Bocchinfuso (Dip. di Scienze e Tecnologie Chimiche),
Michele Buzzicotti (Dip. di Fisica),
Dario Del Moro (Dip. di Fisica),
Ugo Locatelli (Dip. di Matematica),
Blasco Morozzo Della Rocca (Dip. di Biologia),
Gerardo Pepe (Dip. di Biologia).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Author: Michele Buzzicotti
Dipartimento di Fisica,
Università degli studi di Roma "Tor Vergata"
Title: "Generation and Reconstruction of Lagrangian Turbulence
with,Stochastic Generative Models"
Abstract.
Lagrangian turbulence lies at the core of numerous applied and fundamental
problems. However, despite decades of theoretical, numerical, and
experimental research, no existing model can accurately reproduce particle
trajectories’ statistical and topological properties in turbulent flows.
This talk presents a machine learning framework based on a state-of-the-art
diffusion model to generate single particle trajectories in three-dimensional
turbulence at high Reynolds numbers. This approach bypasses the need for
direct numerical simulations or experiments to obtain reliable Lagrangian
data. Our results show that the model reproduces key statistical features
across time scales, including fat-tailed velocity increment distributions,
and anomalous scaling laws.
Additionally, we extend this method to reconstruct missing spatial and
velocity data along trajectories of small objects passively advected by
turbulent flows, such as oceanic drifters from NOAA’s Global Drifter Program.
The method accurately reconstructs velocity signals while preserving
non-Gaussian, intermittent scale-by-scale properties. Notably, the model is
flexible enough to handle different data gap configurations and to exploit
correlations enabling superior performance over traditional Gaussian Process
Regression methods.
This work highlights the potential of machine learning in advancing
Lagrangian turbulence research and addressing longstanding challenges in the
field.
Attachment:
Colloqui_interdipartimentali_5.pdf
Description: Adobe PDF document
- [docenti-chimica] 5o colloquio interdip. sui nuovi metodi computazionali; M. Buzzicotti: "Generation and Reconstruction of Lagrangian Turbulence with,Stochastic Generative Models", in 19, 14:30 del 4/12, Fabio Peresempio
Archivio con motore MhonArc 2.6.16.