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1 Extended Abstract

The Lasso (Tibshirani, 1996) solves a convex relaxation of the ideal but intractable £y penalised least squares.
This convexification buys computational tractability, but at the cost of a global, linear penalty that shrinks
all coefficients equally, regardless of their magnitude or local structure. Ever since its introduction, several
adaptive alternatives have also come up in the literature, notably the adaptive Lasso of Zou (2006) and
folded-concave penalties such as SCAD (Fan and Li, 2001). These methods replace the plain ¢; penalty
by a weighted version where the weights are data-dependent and chosen to downweight large preliminary
coefficients. This adaptivity reduces shrinkage bias on strong signals and, under suitable conditions, delivers
the so-called oracle property: correct support recovery and asymptotically unbiased estimation on the true
smpport.1

Broken Adaptive Ridge (BAR) (Dai et al., 2018) belongs to the same broad family of adaptive regular-
isation methods, but with a different geometry. Instead of a weighted ¢; penalty, BAR uses an adaptive
quadratic penalty where the weights are updated iteratively via a reweighted ridge scheme. Each step solves
a strictly convex ridge problem, and the resulting estimator inherits a ridge-type grouping effect: highly
correlated regressors tend to receive similar coefficients. In contrast to the weighted ¢; penalty of the adap-
tive Lasso, BAR penalises coefficients quadratically but with heterogeneous curvature: small coefficients face
very steep curvature and are pushed to zero, whereas large coefficients face almost no shrinkage. This makes
BAR a closer surrogate to the ideal ¢y penalty, which only cares about whether a coefficient is zero or not
and leaves large signals essentially unshrunk.

In high-dimensional VARs, where strong collinearity across lags and across variables is the rule rather
than the exception, these features are particularly appealing. Adaptive Lasso, while reducing bias relative
to Lasso, still relies on an ¢; geometry. BAR, by contrast, stabilises the autoregressive structure: dominant
own-lags are kept essentially unbiased, weak cross-lags are aggressively shrunk to zero, and highly correlated
lagged variables are treated in a more grouped fashion.

In this paper we contribute by: (i) extending BAR to high- and ultra-high-dimensional time series
frameworks, specifically vector autoregressive (VAR) processes under physical dependence. Like the adaptive

Lasso and folded-concave penalties, we show that BAR attains high-dimensional estimation and prediction

IThis, without the stringent irrepresentable condition required by the plain Lasso, namely that assumption for which variables

inside and outside the true support need not be (strongly) correlated.



rates under a restricted eigenvalue condition and a beta-min condition, without requiring an irrepresentable
condition. (ii) We work under a row-wise weak sparsity assumption on the VAR transition matrices, allowing
for many small but nonzero coefficients, and derive non-asymptotic bounds for the BAR prediction error
and ¢1 /0y estimation errors that accommodate both temporal dependence and sub-exponential growing
dimension. (iii) We establish variable selection consistency (support recovery) for BAR in this dependent,
high-dimensional setting: inactive lags are excluded with probability tending to one, while active lags are
retained under a beta-min separation condition of the same order as the empirical process fluctuations. This
mirrors oracle-type properties known for adaptive Lasso and folded-concave penalties, but is obtained here
for a ridge-based, iteratively reweighted procedure in a time-series context. (iv) Through a comprehensive
Monte Carlo study based on high-dimensional VAR designs with controlled block sparsity and cross-sectional
correlation, we document that BAR systematically improves on Lasso and adaptive Lasso in terms of support
recovery, shrinkage bias on dominant autoregressive coefficients, and structural recovery of the transition
matrices, while achieving comparable or better prediction performance. (v) Finally, the BAR superior feature
selection and forecasting performance are further confirmed by two empirical applications in macroeconomics

and finance.
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