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ABSTRACT
Best linear unbiased estimators (BLUE’s) are known to be optimal in many respects under normal assump-
tions. Since variance minimization doesn’t depend on normality and unbiasedness is often considered
reasonable, many statisticians have felt that BLUE’s ought to preform relatively well in some generality. The
result here considers the general linear model and shows that any measurable estimator that is unbiased
over a moderately large family of distributions must be linear. Thus, imposing unbiasedness cannot offer
any improvement over imposing linearity. The problem was suggested by Hansen, who showed that any
estimator unbiased for nearly all error distributions (with finite covariance) must have a variance no smaller
than that of the best linear estimator in some parametric subfamily. Specifically, the hypothesis of linearity
can be dropped from the classical Gauss–Markov Theorem. This might suggest that the best unbiased
estimator should provide superior performance, but the result here shows that the best unbiased regression
estimator can be no better than the best linear estimator.
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1. Introductory Comments

Best linear unbiased estimators (BLUE’s) are ubiquitous in
statistical practice. The fundamental justification for their use
comes from normal assumptions, but statisticians now realize
that other procedures can show superior performance in certain
respects, both inside and outside normal families. Nonetheless,
it is often assumed that BLUE’s are useful more generally
since unbiasedness often seems reasonable. The result here
should help to disabuse statisticians of this: for general linear
models, any estimator that is unbiased for all distributions in a
sufficiently broad family must be linear. Specifically, there is a
finite-parameter family of distributions such that unbiasedness
over this family implies linearity. Note that second moments
are not needed here. First moments are needed to define
unbiasedness, but no other requirements are imposed on the
estimator (aside from measurability). Further comments on the
implications and generality of this result are presented in the
Section 3.

The problem was suggested by a recent paper by Hansen
(2022) showing that an estimator of a regression parameter
that is unbiased over a sufficiently broad family of distributions
must achieve the Cramer-Rao lower bound. Since Hansen’s
family contains the family introduced here, unbiasedness for
his family is not more general than linearity. Independently
of the work reported here (and contemporaneous with it),
Pötscher and Preinerstorfer (2022) prepared a response to
Hanson’s paper. The authors focused on Gauss–Markov results
and so assumed finite second moments. Their paper included
a theorem showing that linearity followed from unbiasedness
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over a class of distributions larger than the class required
here. The proof was rather different; and, critically, it assumed
finite second moments. The result here requires only first
moments and so shows that the implication from unbiasedness
to linearity depends neither on higher moments nor on variance
optimization. As detailed in Section 3, linearity depends only
on unbiasedness over a relatively small (finite-dimensional) set
of distributions with finite first moment.

2. Basic Result

The result here considers estimators T of a linear combination
w′β of regression coefficients. The proof uses (essentially) two-
point distributions to compute derivatives of T in each direction
and shows the derivative to be constant; from which linearity
follows. This requires smoothness of T, which is assumed in
Part 1 of the proof. Part 2 uses Lusin’s Theorem and somewhat
intricate analysis to show that any measurable estimator is an
appropriate limit of smooth (and hence, by Part 1, linear) ones.
The proofs are given in the Appendix.

Theorem 1. Let F be a family of (error) distributions that is
sufficiently rich so that for any two-point distribution with mean
zero, there is a sequence of continuously differentiable densities
in F whose distributions have mean zero, compact support,
and converge to a point mass at the origin, and whose convo-
lutions with the two-point distribution are contained in F .

Let Y = Xβ + e where Y ∈ �n, X is a n × p matrix,
β ∈ �p , and e has a distribution in F . Let w be any nonzero
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vector in �p .Then any estimator, T(Y), of w′β that satisfies
EFT(Y) = w′β for all F in F , must be linear almost everywhere
(with respect to Lebesgue measure).

Linearity of unbiased estimates of β follows as an immediate
consequence: take wj to be the jth unit co-ordinate vector in
�p and apply Theorem 1 to obtain the jth row of a matrix
representation for T . Note that assuming T to be an unbiased
estimator of the vector β implies that β is estimable and, hence,
identifiable. Formally,

Corollary 1. Consider the model and definition of F above.
Then if T(Y) is an unbiased estimator of β for all F in F , there
is a p × n matrix, A, such that T(Y) = AY almost everywhere.

3. Concluding Remarks

(a) The result here implies Hansen’s result (showing the opti-
mality of BLUE’s) under conditions requiring unbiasedness over
much smaller sets of error distributions. Specifically, it shows
that optimality among estimates unbiased over moderately large
families of distributions is no stronger than optimality among
linear estimators. It may be of interest to explore the relation
between nonparametric unbiasedness and invariance, and par-
ticularly to see if there is a connection with Eaton and Morris
(1970).

(b) Hansen (2022) and Pötscher and Preinerstorfer (2022) both
introduce very large classes of distributions over which unbi-
asedness is required, but their focus on Gauss–Markov theorems
has led to requiring second moments. The result here requires
only the first moment, which is needed to define unbiasedness.
Thus, it clarifies that the linearity result does not depend on con-
sideration of variances (or any other higher moments), nor on
considerations of optimality (like the Gauss–Markov Theorem).

(c) The fact that unbiasedness greatly restricts the class of statis-
tical procedures makes it very hard for best unbiased estimators
to perform well more generally. For example, in regression
settings nonlinear quadratic estimators are often substantially
better (see Gnot et al. 1992); not to mention Stein estimation,
robust estimation, etc. This appears to be a more general phe-
nomenon. For example, Uniformly Minimum Variance Unbi-
ased (UMVU) estimators are generally found as the unique
unbiased estimator depending on a sufficient statistic. Clearly,
the best in a class of size one need not be very good, and such
estimators can lie outside known bounds and even be quite
ridiculous. If X is the number of events observed in the first
quarter of a year and is assumed to be Poisson with mean λ, then
the UMVU estimator of the probability that there are no more
events in the remainder of the year is T(X) = (−2)X . It is often
said that there are exceptions to any rule, but the only exceptions
where UMVU’s possess more general forms of optimality appear
to be in the presence of rather strong structural assumptions.
For example, in smooth exponential families, the UMVU esti-
mator is asymptotically equivalent to the maximum likelihood
estimator (in the sense that the difference is Op (1/n) , see
Portnoy 1977), and so it is asymptotically efficient. However, this
requires the rather strong property that in exponential families,

the conditional expectation given the mean is O (1/n) from the
unconditional expectation.

(d) It seems rather surprising that linearity requires unbiased-
ness only over a remarkably small set of distributions. The proof
here only uses mixtures of discrete two-point zero-mean distri-
butions with a sequence of distributions with smooth densities
that converge in distribution to a point mass at zero. Since
two-point distributions form a finite parameter family (pairs
of points in �n plus the mixing probability, giving dimension
(2n + 1)), their convolutions with a scale family generates a
finite-parameter family of distributions of dimension (2n + 2).
Thus, fully “nonparametric” (infinite dimensional) unbiased-
ness is not needed.

(e) While the reference to Lusin (1912) is historically proper,
this paper is not readily available and restricts to the real line.
Wikipedia has a nice statement of the result for functions on
�n , as do many modern texts on Measure Theory and Integra-
tion; for example see Richardson (2009, sec. 4.4). The result has
been generalized to a wide variety of measure spaces.

Acknowledgments

The author thanks Bruce Hansen (whose intriguing article gave rise to
this work), Roger Koenker (who brought the article to my attention), Alan
Welsh, Benedikt Pötscher, David Preinerstorfer, and the editorial reviewer
of the article who offered extensive and very valuable comments. I am very
grateful for the helpful remarks and encouragement from these colleagues.

Appendix: Proof of Theorem 1.

The basic idea of the proof is as follows: Part 1 uses unbiasedness
of the estimator, T(Y), to relate T(±ay) and T((a + ε)y) in order
to compute directional derivatives along a ray. As is clear from the
proof in Part 1, this would be straightforward if discrete two-point
distributions were allowed. However, discrete distributions will be
avoided here since the existence of a gradient is needed to show that
linearity of the directional derivatives implies linearity on �n . So, Part
1 assumes T(y) is continuously differentiable and considers sequences
of (smooth) distributions tending to point masses in order to compute
the directional derivatives. The directional derivatives can be expressed
in terms of the estimator. This leads to differential equations, which
can be solved to show that the directional derivative is constant. The
constant must equal the directional derivative at zero, which will imply
linearity for differentiable estimators.

Part 2 shows that any estimator unbiased for all F ∈ F can
be taken to be smooth. This appears to require a somewhat compli-
cated argument and so is done is 4 steps. The first step uses Lusin’s
Theorem (Lusin 1912: roughly stating that measurable functions are
“nearly” continuous), and then obtains a differentiable approximation
by using convolution with a sequence of smooth distributions tending
to a point mass. Step 2 is a technical proof providing bounds on the
unbiased estimator, the smoothed versions, and the contribution from
the exceptional set of small measure given by Lusin’s Theorem. Step
3 assumes (from Part 1) that the smoothed versions are linear, and
uses the previous bounds to show that the linear coefficients converge
to a fixed coefficient vector. Finally, Step 4 shows that the smoothed
estimators converge to the original unbiased estimator, which will be
linear since the linear approximations converge.

In the proof, the set of smoothing distributions are somewhat
restricted. They are assumed to have compact support, but they could
be given by a fixed scale family (with the scale tending to zero). In
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fact, mixtures of, say, normals (or t3-distributions with means but no
second moments) will also work, though the lack of a bounded domain
complicates the proof. Clearly it is possible to choose a scale family that
generates iid observations, but note that the mixture will give stationary
but not independent observations.

Proof of Theorem 1

Part 1: Compute directional derivatives in direction y for T smooth:
For Part 1 alone, suppose T(y) has a continuous first derivative. Let

y ∈ �n be a vector with ‖y‖ = 1 and consider error distributions that
are the mixture of two distributions concentrated on small neighbor-
hoods around two points, {±ay} . Choose the neighborhoods so that
EY = 0 , and let the neighborhoods shrink. Since T is continuous, the
expectations will tend to the (same) mixture of the points. Hence, (by
unbiasedness at w′β = 0 )

1
2

T(ay) + 1
2

T(−ay) = 0. (1)

Now, consider two points ((a+Aε)y) and (−ay) with probabilities
( 1

2 −ε) and ( 1
2 +ε) chosen so that the expectation of Y is 0 . As above,

this implies:

(ay + Aεy)(
1
2

− ε) + (−ay)(
1
2

+ ε) = 0

Simplifying:

1
2

Aεy − ε(2ay) − Aε2y = 0 ⇒ A = 4a + O(ε) , (2)

where the second equation holds by taking the inner product of the first
with y (since ‖y‖ = 1).

Now, as above, unbiasedness of T (at w′β = 0 ) implies:

T(ay + Aεy)(
1
2

− ε) + T(−ay)(
1
2

+ ε) = 0. (3)

Subtract (1) from (3)
1
2
(T(y(a + Aε) − T(ay)) + ε(T(−ay) − T(y(a + Aεy)) = 0.

Divide by Aε and let ε → 0 ; note: A = 4a + O(ε) :

∂yT(ay) = 1
2a

(T(ay) − T(−ay)). (4)

where ∂yT(ay) denotes the directional derivative of T in direction y
(at ay ). Similarly:

∂yT(−ay) = 1
2a

(T(−ay) − T(ay)) (5)

Finally, define

S+
y (a) ≡ T(ay) + T(−ay)

S−
y (a) ≡ T(ay) − T(−ay)

Then adding and subtracting (4) and (5):

d
da

S+
y (a) = 0 ;

d
da

S−
y (a) = 1

a
S−

y (a).

Solving the equations for S+
y (a) and S−

y (a) (using (1) to show
S+

y (0) = 0):

S+
y (a) = c ; S+

y (0) = 0 ⇒ S+
y (a) = 0 ,

d
da

log(S−
y (a)) = 1

a
⇒ log(S−

y (a)) = log(a) + cy (a > 0) ,

where cy depends on y but is constant in a . Thus,

S−
y (a) = c∗y a.

where c∗y = exp(cy) , and again is constant in a (depending on y ).
So (for a > 0 ), there is a value d(y) , where d is a function not

depending on a such that

T(ay) = 1
2
(S+

y (a) + S−
y (a)) = 0 + 1

2
c∗y a = d(y)a . (6)

Finally, apply (6) in each co-ordinate direction, {yi : i =
1, . . . , n} , where yi is a fixed unit co-ordinate vector. Thus, d(yi)
is a constant di not depending on yi , and it follows that the gradient
of T is the constant vector b = (d1, . . . , dn)′ ; and T(y) = b′ y .

Part 2. T can be taken to be smooth.

Step 1. Smooth T by convolution:
For each r > 0 , let B(r) ⊂ �n denote the ball of radius r . By

Lusin’s Theorem, one can choose closed sets Er ⊂ B(r) so that T
restricted to Er is continuous and λ(Br − Er) ≤ ε/2r (where λ is
Lebesgue measure). Take E� = ∪r=1:�Er and E = lim� E� = ∪�E� .
Then {E�} is an increasing sequence of closed sets with λ(�n−E) ≤ ε ,
and T restricted to E is continuous.

Let Zm have a density gm(z) (with respect to Lebesgue measure),
which has an absolutely bounded continuous first derivative and has
domain contained in {z : ||z|| ≤ 1/m} . Define

T∗
m(y) = EZm T(y + Zm) =

∫
T(y + z) gm(z) dz. (7)

Then T∗
m is trivially unbiased (since T is, and the distribution of

(e + Zm) is in F ), and it has an absolutely bounded and continuous
first derivative (as a convolution with such a smooth density). By part
1, T∗

m(y) = b′
my for some coefficient vector bm .

Part 2, Step 2. Show T and T∗
m are uniformly bounded on a Ball:

Fix y ∈ E with ‖y‖ ≤ r (that is, y ∈ B(r) ). Since T is continuous
on E , and ‖y + z‖ ≤ r + 1 for ‖z‖ ≤ 1 ,

sup
{(y+z)∈E , ‖z‖≤1}

|T(y + z)| ≤ sup
{w∈E, ‖w‖≤r+1}

|T(w)| ≤ Cr , (8)

where Cr depends on r , but does not depend on y ∈ B(r) nor on gm .
Now, let IA(z) denote the indicator function of the set A . For each

m (and y ), choose a set Gm ⊂ B(r)∩(E−y) , again by Lusin’s Theorem
for the measure gm(z) dz , so that T(y + z) is continuous on Gm and

∫
IGc

m(z) gm(z) dz ≤ ε

1 + ε
, (9)

where Gc
m denotes the complement of Gm . From (8),

∫
IGc

m(z) |T(y + z)| gm(z) dz ≤ ε

1 + ε
Cr , (10)

(and Cr remains independent of y for ‖y‖ ≤ r , and also of gm ).
Then,

T∗
m(y) = EZm T(y + Zm) (11)

=
∫

IGm(z)T(y + z) gm(z) dz +
∫

IGc
m(z)T(y + z) gm(z) dz.

(12)

The first term needs to be (approximately) an integral with respect
to a density; so define

d ≡
∫

IGm(z)gm(z) dz = 1 −
∫

IGc
m(z)gm(z) dz .
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Then, by (9), 1/(1 + ε) ≤ d ≤ 1 , and
∣∣∣∣
∫

IGm(z)gm(z) dz −
∫

IGm(z)(gm(z)/d) dz
∣∣∣∣ ≤

(
1
d

− 1
)

≤ ε.

(13)
Adding (10) and (13) (and using (8) ),
∣∣∣∣ T∗

m(y) −
∫

IGm(z)T(y + z) gm(z) dz/d)

∣∣∣∣ ≤ (2Cr + 1)ε (14)

for y ∈ E with ‖y‖ ≤ r .

Part 2, Step 3. Show {bm} are uniformly bounded:
Recall that T∗

m(y) = b′
my (from Part 2) For {y1, . . . , yn} in E

with ‖yi‖ ≤ 1, define A = A(yi) to be the matrix with rows {yi}
and let η1 be the smallest absolute singular value of A . Consider
sets

Sa ≡ {A(yi) : η1 > a, yi ∈ E, ‖yi‖ ≤ 1}.

The complement of S0 has η1 = 0 and so if A(yi) /∈ S0 , {yi} must
lie in a linear subspace of dimension less than p2, the dimension of the
space of A-matrices. That is, the complement must have measure zero
(in �p2 ); and so there must be a > 0 such that the measure of Sa
is strictly positive (since otherwise the measure of S0 would be zero).
Therefore, there is a matrix of form A(yi) with η1 > a ; and, thus, the
maximum absolute singular value of A−1 is less than the finite constant
1/a .

Then (with bm the linear coefficient of T∗
m ),

(T∗
m(yi))

′ = bm A ⇒ bm = (T∗
m(yi))

′ A−1 ⇒ ‖bm‖ ≤ ‖(T∗
m(yi))‖

a
,

and from (14),

‖bm‖ ≤
√p(2C1 + 1)

a
≡ C′. (15)

So (by compactness) there is a subsequence along which {bm} con-
verges to b0 . This convergence does not depend on y ∈ B(r) , and so
for m large enough, there is a subsequence along which

‖bm − b0‖ ≤ ε/r . (16)

Part 2, Step 4. Show that T is linear if T∗
m is:

Now, since T(y + x) is continuous on Gm and at y (since y ∈ E ),
∫

IGm(z)T(y + z) (gm(z)/d) dz → T(y).

as m → ∞ . This holds for any y ∈ E with ‖y‖ ≤ r} ; and this
convergence is independent of the convergence of bm to b0 shown in
Step 3. Therefore, from (16) and (14) (and from T∗

m(y) = b′
my ), given

ε∗ > 0 , choose ε = ε∗/C′ and there is N such that for m > N

|b′
0y − T(y)| ≤ |bm − b0| ‖y‖

+
∣∣∣∣
∫

IGm(z)T(y + z) gm(z)/d dz − T(y)
∣∣∣∣ ≤ 2ε∗

for y ∈ E with ‖y‖ ≤ r .
Finally let ε∗ → 0 and r → ∞ . It follows that T(y) = b′

0 y for
almost all y (with respect to Lebesgue measure). Q.E.D.
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